. SEMBDREE

R

{1]

- COAPUTATI

Harvey Abramson
Veronica Danhl

FogIic
Grammars |

@ Springer-Verlag

Harvey Abramson Veronica Dahl

Logic Grammars

With 40 Illustrations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo

Harvey Abramson

Department of Computer Science
University of Bristol

Queen’s Building

Bristol BS8 {TR

England

Veronica Dahl

Department of Computer Science
Simon Fraser University
Burnaby, British Columbia
Canada V5A 186

Library of Congress Cataloging-in-Publication Data
Abramson, Harvey.)
Logic grammars.
(Symbolic computation. Artificial intelligence)
Includes bibliographies.
1. Logic programming. 2. Artificial intelligence.
1. Dahl, Veronica, 1950 . II. Tite. 1II. Series.
QA76.6.A268 1989 006.3 88-35636

Printed on acid-free paper.

© 1989 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York 10010,
USA), except for brief excerpts in ‘connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. In this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Text prepared by authors in camera-ready form.

Printed and bound by R.R. Donnelley & Sons, Harrisonburg, Virginia.

Printed in the United States of America.

987 6 5 43 21|

ISBN 0-387-9696126 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-96961-6 Springer-Verlag Berlin Heidelberg New York

To Lynn, and also to Cali who helped with the reading.

Harvey

To my mother, Selvita, and to Alice in Wonderland, for having
provided role models with which it was possible to identify.

To Alexander and to Rob, for restoring the music in my heart.

Veronica

ACKNOWLEDGMENTS

I would like to ackowledge the influence of all the people who have stimulated my
orientation toward logic, linguistics, and computational linguistics:

1. The phonetician Ivar Dahl, from whom I inherited or acquired a passion for the
study of language.

2. The linguists Gabriel Bes, Alfredo Hurtado, Celia Jacubowicz, Beatriz Lavan-
dera, Ana Maria Nethol, and Luis Prieto, whom in the precariousness of the
Pampas developed my interest in formal linguistics—especially Alfredo Hur-
tado, with whom in exile I later started a collaboration that led to my research
on Static Discontinuity for Government-Binding theory.

3. Alain Colmerauer and his group at Luminy, who introduced me to the marvels
of logic programming and logic grammars and for more than two years pro-
vided me with a wonderfully friendly working atmosphere.

4. The veteran logic programming community, with whose lovely people from all
countries I have always felt at home.

I would also like to thank Roland Sambuc, for our joint work on the first logic pro-
grammed expert system; Michael McCord, for our joint work on coordination and
on discontinuous grammars; and all the people who, as visitors or members of my
research group at Simon Fraser University, have contributed in one way or another
to the work described in chapter 10: Michel Boyer, Charles Brown, Sharon Hamil-
ton, Diane Massam, Pierre Massicotte, Brenda Orser, T. Pattabhiraman, Fred
Popowich and Patrick Saint-Dizier.

Finally, I thank France, for having provided in 1975 the scholarship without which
this book would never have been written, and Canada, my beautiful land of adop-
tion. And, with special warmth, my many Latin American siblings, with whom I
developed the resilience to keep aiming for the impossible.

Veronica Dahl

I would like to thank the following people and institutions for their help and or
inspiration:

Ray Reiter, who while he was at the University of British Columbia, helped to
de-isolate the place by arranging visits of some of the leading logic programmers
and thus making it possible to get involved in the field at an early stage.

Alan Robinson, for his early encouragement of work which led to HASL and
eventually to my work with grammars and language implementation. His

Acknowlegments
viii

combination of science, humanism, and generosity is exemplary.

David Turner for the example of SASL whose implementation in logic was so
easy because the language was so elegant.

Professors Mike Rogers and John Shepherdson, and all the members of the Com-
puter Science Department at the University of Bristol for the warmth of their
reception and their interest while I spent a six month’s sabbatical leave there from
January to June of 1987.

Seif Haridi and the Logic Programming Group of the Swedish Institute of Com-
puter Science and the chance to spend a few weeks there in a fine working
environment.

Finally, the following three great things at UBC which helped to soothe the
savaged academic:

1. The Wilson Recordings Library for providing music.

2. The Asian Studies Centre and Continuing Education for providing the oppor-
tunity of beginning to learn Japanese, and for providing a window to oriental
languages and cultures.

3. And most of all ... (details on request).

Harvey Abramson

JOINT ACKNOWLEDGMENTS

We thank the students at Simon Fraser University and the University of British
Columbia who helped us refine earlier versions of the material in this book. We
are very grateful to Julie Johnson, G.M. Swinkels, and Bruce Weibe who spent so
much time and energy in typesetting the book. Thanks to Barry J. Evans for a
careful proof-reading of a near final version of the book.

We wish to thank the referees, whose pertinent comments were extemely valuable
in mmproving the book. We also thank Springer-Verlag for its tolerance of our
"fuzzy" interpretation of deadlines.

This book was completed with help to both of us from Canada’s Natural Science
and Engineering Research Council. V. Dahl’s work described in section 3 of
chapter 10 was partially supported by an S.U.R. research contract from 1BM
Canada.

Another such contract with H. Abramson, although not contributing material itself,
did provide some support during the time of writing the book.

Acknowledgments

We wish to thank the organizing committees of the various logic programming
conferences, symposia, and workshops who made it possible to collaborate in
interesting places when it was too inconvenient or tedious to drive 20 miles across
Vancouver.

Finally, let us state we are indebted to too many people to mention individually.
Our apologies to those whose names are not explicitly stated here.

Table of Contents

PART 0. Introduction and Historic Overviewcccoccvvevevcvenreecrrenncs 1

PART 1. Grammars for Formal Languages and Linguistic

RESEAICR ...ttt sttt e e reen 5
Chapter 1. What are Logic GTaMIMATScceovciveieieeivineerersesssesisesersseresonas S
1. Logic Grammars — Basic FEAturescccocovcoevmecrveiiiirse e 5
2. Grammar SYMDBOISoooiiiroiuit it se s et s ee s seeeees 5
3. Use of Variables and Unificationcccocveveeiiiveveneneeeieeseesesesese e 7
3.1 UNIFICALON «...ceceereciiciecene ettt saeeee e s e e 7
3.2, Derivation Graphsccocovrierieniiiece et stsse et enes e 9
3.3. Symbol Arguments: Producers and Consumers
Of SITUCKUTE ...ttt eeseee et eeee e sesass e 10
4. Tests Within RUIESccovuvcovieriiriiiieieeteees e eeeeeeeeeeee e reee s 11
5. OPETALOTSoucvierircenieiiiesetretes st er s ssese et eassee e ssseeeessesss s seseassens 12
6. Analysis and GENETALONovevviveeeneereeeeeeeeeeeeessersesesseseseseeessons 13
7. A Formal Language EXampleccoouoivooveoiomeeeeeeeeeee oo, 14
Chapter 2. Relation of Logic Grammars t0 Prologoc.coeeevvevsvnsreornnnn, 17
1. BasiC Prolog COMCEPLScuvuvrurrrurierireieeeeeeees s ceseesseesesseeseessss s 17
2. Prolog as a Language RECOZNIZETc..covuveveeeeereeneereeeseseeesesesrean 19
3. Prolog as a Structure BUildercoocoouoounieoveeeeesereeeeece s 20
Bibliographic Commentary for Part Io..oocoocooooooooioeeooeeeoeeooe 23
PART II. Getting Started: How to Write a Simple Logic
GRAMMAT ..o 25
Chapter 3. Step-by-Step Development of a Natural Lan guage
ANALYSET covnnveiitct e et 25
1. Propositional STAtEMENSvomeeeeeeeeeereees e 25
2. Obtaining Representations for Propositional Statements. 27
3. Syntactic and Semantic AGrEEMENTcovvv.ooveeommroooeoeoooooo 30
4. NOUN PRTASESoo.vevceecenrireii et 31
5. NEGAUVE SENIENCEScvvuvvrrrnrireceeeieeeeee oo 36
6. INtEITOZative ClAUSESvcouvveenerernceerseeeeeeeseesee oo oo 39
Chapter 4. Choosing Internal Representations for Natural Lan guage 43

Xii Contents

1. Logical Form for Querying Knowledge Represented in Logic 43

2. First-Order Logic Representationsc.c.coceeeevrrirerueecreeensnssssiesesneninns 45
2.1. Semantic Well FOIMEANESscoo.ovuurveverirrsernrenesaneensesserscssssnnsns 46

2.2 AMDIGUILY oovieerviie ettt sese e sttt 46

2.3. Natural Language Determiners and Modifierscococveecerenrrcerrinns 46
2.3.1. Three-Branched Quantificationcccoooeeeviivicnvenerine e 47

2.3.2. QUANtfier SCOPING ..cvurveririireirririaeieine s e asessessessessaneas 52

2.4, NEGALION .ottt te e seset s e et snt s e st s eeseanes 53

2.5. Meaning of Pural FOMMScccoovniiniieiccre i revsseessenss e, 54

2.6. REPIESENLING SELS vvvcvrverereireiiieiiii ettt sbsbs e naes SS

3. Lambda-Calculus REPresentationsce..ereereersenreecrnnssnsesssessssesennas 55
Chapter 5. Developing a Logic Grammar for a Formal Application 61
1. An Analyzer for LOIiC PrOGramsc.ccccoocconminenoreoneceeresereseeseeesens 61

2. Simple Lexical ANALYSIS c.coocoeviveieeeireeeiieeceeeec oo ee e eesseseeans 64

3. Structural Representation of a Logic Programcc.co.eouvveeievineenn. 67

4. "Compiling" LOGIC PrOZramsccco.evevrvieeieeieeiiieeeeseseeseesessceseessons 69
5. Compiling Proof Tree Generation into RUlesocoveeeeevrerresrenennnnn, 70
Bibliographic Commentary for Part ITcocoocoovoieeroerceoeeeeoeoeeeo 75

PART Il Different Types of Logic Grammars — What Each Is

USETULFOT ...ttt e eee e ese e e 77
Chapter 6. Basic Types of Logic Grammarscoceveveeerererresreesnsoeesnn, 71
1. Metamorphosis GIAMmMATsc..oocooueieeeeeeseeereseeeseeesesessesees oo, 78
2. Definite Clause GIammars «................cocoueeeeeeereeereeoseesesseessessess e 79
3. EXtraposition GIamimarsco.ccoveevureeeeereoseresressiessesssessessesssssssoon, 81
4. DISCUSSION ..ocvviiniincceiecinecnitne sttt ss et es s sseees s es s 82
Chapter 7. Building SITUCIUTEcvvuveriveieieeceeee oo seeee e, 85
1. Parse Tree CONSIUCIONcc.cvvumrirmrrueieeeneencecseseesseesesesssseesesseessseas 85
2. Meaning Representation Buildupcocccoovueveerormmcemresoeeseeeoo 86
3. Automating Syntactic and Semantic Structure Buildupcooooe........... 88
Chapter 8. Modifier Structure Grammarsoocoovvovvevooooeooooo 91
1. Separation of Syntax and SEMANtCSo....veovevroreoeeereoeeroeoo 91
2. QuAantifier RESCOPINGv.vvverveieeeeceeeeeeeeee oo oo 91
3. COOTAINALION ...t 92
4. TMPIEMENLAIONcvureviveireiecieeeeeee e 93
5. DISCUSSION ..ovooveeviereenceese et es s 93

Chapter 9. Definite Clause Translation Grammars
and their APPIICAONScoevuerveeririeesesieeeeeseesseses s ee oo, 95

Contents X1t

1. Definite Clause Translation Grammarscccoceeiniemriessinnniiesnesesennes 95
2. A COMPIIET ..ottt ercren e e e s bbb bbb sbabsasn 109
2.1, INEOAUCLION ..vveveereeeriiiiieietceinietee s s e e s s e ssas s esesbsbatanen 109
2.2, LeXiCal ANALYSISovvvvierreerirerieintenesseseeeiossessesnssesssasassssssssesensencs 111
2.3. Between Lexical and Syntactic Analysisc..cccccoerivnncnencneninennnnes 113
2.4, SyntactiC ANALYSISooveveeeenriieee ittt eaebeas 115
2.5. Code GENETAtIONcccceveveerireeerieeeiieriere e e evese s srestesesesaenis 116
2.5.1. The Target Machineccccco.ovueererrrininsisssnsnssessensasssessesesnsens 117
2.5.2. Code Generated for Statementsccc.ccoceeeverererernreenererecnseenns 119
2.5.3. Code for EXPIESSIONScoccvevevieeeirieieiirereesesesessanesesesesnsssnssssons 122
2.6. Assembly and AIIOCAHONcccouviirieiveeeriirce e esses e rvenas 126
3. A Metagrammatical Extension of DCTG Notationc..cecvereeinneee. 128
4. Grammatical Data TYPINGccccoeuerririiriririirics et 135
4.1. The Natural NUMDETSc.ccccocviiiiiiiiiinierinierercereeeestssesteesesresessesnnas 135
B2 LISES voveeiereenirenrerrerersatiissesssstetetesstetessasasesesersrererssssssa b s ts e sssnsensssaenen 137
4.3, TICES w.ovvrierecrerereetresser st s et bbbt et e es e s b b sna b s s sane 139
4.4. Infix and Prefix NOtationeeoeeiveveicieininieceeece s eseeenenee 139
4.5. Comments on Grammatical TyPingccc.covvvvvervrveieeesieereeceenenne 140
Chapter 10. Further Expressive Power — Discontinuous Grammars 143
1. The Discontinuous Grammar Familyc.cocoevirriieceeereceeerennns 143
2. Thinking in Terms of Skips — Some EXamplescocvreeeeeeeeeneenn. 145
2.1, COOTAINALION ...cevvvivrtiieitireietentitr e saee et s e eeenaeesens 145
2.2. Right EXtTaPOSItION ..cvcvevveieiieieierieee oo evee et sersesesesesseesssnssonas 146
2.3. Interaction between Different Discontinuous Rulescccveeen.... 149
2.4. Avoiding Artifices through Straightforward Uses of Skips 149
2.5. Rules with More Than One SKipc.ccovveiveveeeeeeerereeeessreeseeenennns 150
2.6. DGs and Free Word Order Languagesccveoveeeeeeerereeeseenernn, 150
2.6.1. Totally Free Word or Constituent OTderc.cooveverrvrersrennn. 150
2.6.2. Lexically Induced Rule Format and Free Word Order 151
3. Static Discontinuity Grammars and
Government-Binding TREOTYcocovverirernrieeririe et esesoseseseene 153
3.1. Rendering Context-Free Simplicity with Type-0
POWET oottt st 153
3.2. Government-Binding-Oriented COnStraintsccevveererverveenennn. 155
3.3. DEfiMItON ...cuuiereieieiieieieeeenteeee e eeeeeees s s s e 157

3.5. Transporting the Static Discontinuity Feature into
Logic Programmingc.cccoeueruecnereciconseecseeeeeeseesescessesesesons 158
Bibliographic Commentary for Part Ilcoeoueveennnn.. 161

Contents

Xiv
PART IV. Other Applicationsccocooevinniiiicieeeie e e ereenee 165
Chapter 11. Other FOrmaliSMSccvcvveieieireienieeieseerecnsneeessesesssesassesessenns 165
1. ReStriction GrammATsccococevieiereiineneneneieieeteseseeeeensesssasssssssesssnsseseses 165
2. PUZZIE GAMMALSveverieeienirnireciesiessessesiee s seseeenes s taes s sssssssssassnssassnn 167
3. DHSCUSSIONvvreereetneerice ettt et s se sttt 169
Chapter 12. Bottom Up Parsingc.cceeoeuiveveieceevieeesicsesseeseeseeeresnenens 171
L INEOAUCHON wooeeieeecereiniei ettt ettt ees s e cn s eaenesseessenens 171
2. Compiling Context-Free RUIEScocvovvervievrincriineisieeiesiseesoeeeseesseseesesees 172
Bibliographic Commentary for Part IVc.cocooovveveeieerceeeesce s, 177
PART V. Logic Grammars and CONCUFTeNCYcoocooevrvoveeoerreoror., 179
Chapter 13. Parsing with COMMIttMENtcoocovveorveeeeerreeeeeeieeoeoe, 179
LUINIOAUCHON ..ot e 179
L.1. Sample Grammarcccooveuieriieeeoecoeree oo sees s 182
1.2. The One Character Lookahead Relationo.ooooeooeoooooonn. 182
2. Compilation to Sequential Logic Programscoo.coovveovvoovooooosoonn, 183
3. Compilation to Concurrent Logic Program Clausesc....cocceevueeeennn.. 185
4. Generalized Deterministic Grammarso..coooooooooooo 187
5. Related WOTK ... 188
6. Parallel Parsing for Natural Language Analysis ...o.ccovreneeiceeenn, 189
6.1. Sample GraMMATcooucvvueeeeeeieeeeeeeeeee oo 189
6.2. Parallel Parsing Method.oooooooomovcommoooo 191
Bibliographic Commentary for Part V ... 196
APPENICES ..o 197
L Input/Output in Logic Grammars ... 197
1. INPUL Of @ SENLENCEovvoveeveeerreeeeeieeeeeveeee oo 197
IL Implementation of Logic Grammar Formalisms 199
1. SYNAL: Compiling Disc. Grammars to Prologcccovevviiceeeeereeennn. 199
2. A Short Interpreter for Static Discontinuity Grammarsco.............. 201
3. Implementations Of DCTGSeeceeomomeeeeeeooooooooooeoeooooooooooo 203
3.1. An Interpreter for Definite Clause Translation
GIAMMATS .ooooeieeeeecoe oo oo 203
3.2. Compiling Definite Clause Translation Grammars to
PIOIOE ..o 205
3.3. TYPINE DCTGS ...ooovvvvevvveeneneeemeeeeeeeeeeseeessoeeeoe oo 212
LITERATURE ioiinneeecrceeeeessseeeeeeesseeseeessssssese oo eeees oo 215

INDEX ..oooooovivivsutemsmmssmsssesssmeesesssssaansnsanasssssssssssssssssss s eeeseoeseeeeoeeoeeeeeeeoeeseeees 225

PART 0

INTRODUCTION AND HISTORIC OVERVIEW

The principles of logic programming have been applied to formal and natural
language processing since 1972, mainly through the Prolog language. Starting
from applications such as question answering systems, many interesting problems
in natural language understanding were studied with the new insight that logic is a
programming tool ~ an insight very much in line with previous uses of logic in
computational linguistics. Thus, areas such as formal representations of natural
language, grammar formalisms, methods for analysis and generation, and even
very specific linguistic aspects such as coordination evolved in directions typical
of the context of logic and of logic programming. In the formal language area,
logic grammars have been used for implementing recognizers and compilers, also
with good results, particularly in the conciseness of the systems obtained.

Traditionally, logic was considered one of the most appropriate tools for
representing meaning, due to its ability to deal formally with the notion of logical
consequence. Representing questions and answers in logical form typically
required some extensions to classical predicate calculus. In the recent past, logic
was also used to represent the information to be consulted in question-answering
systems. Here also, departures from first order logic were necessary, and in gen-
eral, parsing knowledge, world knowledge and the meaning of questions and
answers were represented and handled through quite different formalisms, result-
ing in the need for interfaces to link them together.

The introduction of Prolog (PROgrammation en LOGique) by Colmerauer and
others made it possible to use logic throughout, minimizing interfaces from one
formalism to another. World knowledge can be represented in logical form,
through facts and rules of inference from which a Prolog processor can make its
own deductions as needed. Extracting logical consequences amounts to
hypothesizing them and letting Prolog deduce, from the facts and rules stored,
whether they indeed are logical consequences, and, if they are, in which particular
instances. Questioning and answering reduces to hypothesizing the question’s
content and letting Prolog extract instances, if any, that make the question true
with respect to the world described. Those instances become answers to the ques-
tion.

Parsing itself can be left to Prolog, by representing it as a deductive process — i.e.,
grammars can be described as facts and rules of inference, and sentence recogni-
tion reduces to hypothesizing that the sentence in question does belong to the
language, and letting Prolog prove this assumption.

The Prolog equivalent of grammar symbols, moreover, are logic structures rather
than simple identifiers. This means that their arguments can be used to show and
build up meaning representation, to enforce syntactic and semantic agreement, etc.
In other words, the very nature of Prolog facts and rules allow us to retrieve
instances from parsing that can tell us more than mere recognition: logical

2 PART 0. Introduction and Historic Overview

representation of the sentences recognized, causes of rejection, such as semantic
anomaly, etc. Thus Prolog is eminently suitable for linguistic work.

Nevertheless, writing substantial grammars in Prolog that could in practice be
used as parsers did require knowledge of the language (i.e., a computer specialist’s
mediation), and involved caring for details that belong to the nature of Prolog’s
mechanism rather than to considerations of linguistics or the parsing process
proper.

The introduction of metamorphosis grammars by A. Colmerauer in 1975 was the
first step in making Prolog a higher level grammar description tool. Although
these grammars are basically a syntactic variant of Prolog, they achieve two
important improvements with respect to Prolog’s syntax:

1. They allow the direct writing of type-O-like rules (in the sense of Chomsky’s
formal grammar classification); these rules can have more than one symbol
on the left hand side.

2. They hide string manipulation concerns from the user.

Prolog grammars can now be thought of as rewriting mechanisms which assemble
and manipulate trees rather than as mere procedures to be described in terms of
Prolog rules and facts. In present implementations, logic grammars are automati-
cally translated into Prolog, but they still remain a distinct formalism in their own
right, and they do make life easier for the non-computer specialist—e.g., for
linguists.

In 1975 then, all the pieces were laid out to build a new synthesis in the design and
implementation of natural language consultable knowledge systems. A. Col-
merauer exemplified in a toy system about family and friendship relationships how
these pieces could be put together. One of the authors, V. Dahl, developed the
first sizeable applications of this new synthesis: first an expert system for
configuring computer systems, together with R. Sambuc, and then a data base Sys-
tem with French and Spanish front ends. Both systems were written entirely in
Prolog. Logic was used throughout: as a programming tool, as the means for
knowledge representation, as the language for representation of meaning for
queries, and (in the form of Prolog’s hidden deductive process) as the parsing and
data retrieval mechanism.

Not all of these uses involved the same type of logic: for natural language
representation, Dahl used a three-valued set-oriented logical system; for
knowledge representation, she developed some Prolog extensions such as
domains, set handling primitives, etc. Yet other developments were needed to
solve problems specific to Prolog, such as dealing with negation and modifying
Prolog’s strict left-to-right execution strategy in order to provide a more intelligent
and efficient behavior.

These extensions, as well as the link between different logic formalisms used in
these systems, were also hidden from the user. From an implementation point of
view, the fact that logic was used throughout made the linking of different formal-
isms a much simpler task than in typical data base systems, resulting in a concise
formulation. For instance, the three-valued logic mentioned above was

implemented through a Prolog definition of how to evaluate its expressions, which
took less than a page of code.

These techniques were soon exported to other data base and expert systems con-
sultable in other languages (English, Portugese, etc); the main feature of the appli-
cation of these techniques was the striking ease with which the transposition was
achieved. An English adaptation of this system was used in a key paper by F.
Pereira and D. Warren—**‘Definite Clause Grammars for Language Analysis.’” This
article analyzed the logic grammar approach and compared it with the Augmented
Transition Network approach, concluding that the former approach was superior.

These encouraging results prompted further research: the techniques for language
analysis and for modifying execution strategy were adapted into the CHAT-80
system. M. McCord systematized and perfected the notion of slots and modifiers
that had been used in the earliest analyzers, achieving a more flexible strategy for
determining scope; F. Pereira developed the extraposition grammar formalism,
specifically designed to make left extraposition descriptions easier. Dahl and
McCord then joined efforts to produce a metagrammatical treatment of coordina-
tion in logic grammars, and developed as a by-product a new type of them called
modifier structure grammars (MSGs), these are essentially extraposition rules in
which the semantic components are modularly separated from the syntactic ones,
and for which the building of semantic and syntactic structure, as well as the treat-
ment of quantifier scoping, of coordination, and of the interaction between the
two, is automated. Further work on coordination was produced by C. Sedogbo
and L. Hirschman. The notion of automatic structure buildup that resulted from
Dahl and McCord’s work on coordination was isolated by H. Abramson into the
definite clause translation grammar formalism (DCTGs). In it, natural language
processing power is traded for simplicity (e.g., quantifier scoping, coordination
and extraposition are no longer automated), but for other applications, semantic
structure buildup is usually enough. The separation between syntactic and seman-
tic rules is also mentioned.

In 1981, V. Dahl generalized extraposition grammars into a more powerful for-
malism, called discontinuous grammars,! that can deal with multiple phenomena
involving discontinuity: left and right extraposition, free word order, more concise
descriptions, etc. Implementation issues were investigated jointly by the authors,
by Dahl and McCord, and by F. Popowich. A constrained version of these gram-
mars was investigated by Dahl and Saint-Dizier.

A more interesting subclass of the discontinuous grammar family was developed
by Dahl and investigated within her research group for the purpose of sentence
generation using Chomsky’s Government and Bindin g theory: static discontinuity
grammars (SDGs). In this subclass, movement phenomena can be described stati-
cally, and the power of type-0 rules coexists with the representational simplicity of
context-free-like rules (i.e., trees rather than graphs can depict a sentence’s

! The early publications use the lerm gapping instcad of discontinuous. This name was changed
in order to avoid evoking the wrong associations, since the linguistic notion of gap is a diffcrent
one.

4 PART 0. Introduction and Historic Overview

derivation). Hierarchical relationships, crucial to linguistic constraints in general,
are thus not lost, and linguistic theories can be accommodated more readily, by
expressing these constraints in terms of node domination relationships in the parse
tree.

Bottom-up parsing has been investigated by A. Porto et al., Y. Matsumoto et al.
and K. Uehara et al. Miyoshi and Furukawa have developed another logic pro-
gramming language specifically suited for object oriented parsing. M. Filgueiras
has studied the use of cooperating rewrite processes for language analysis.

The field is active and promising. This book intends both to introduce the main
concepts involving language processing developments in Prolog, and to discuss
the problems typically encountered and some of the alternatives for solving them.

After an in-depth presentation of the basic material, we provide a wide rather than
deep coverage of many of the related topics. Some bibliographic references are
mentioned within the text at places where they are directly relevant, and at the end
of each part we complete the picture with other relevant bibliographic comments.

Some chapters were written by one of the authors and revised, with suggestions
and comments by the other one: chapters 1 — 4, 6 — 8, 10; section 2 of chapter 11;
appendix I; and sections 1 and 2 of appendix I were written by V. Dahl.
Chapters 5 and 9; section 1 of chapter 11; chapters 12 and 13; and section 3 of
apppendix II were written by H. Abramson. Bibliographic commentaries were
written jointly.

PART I

GRAMMARS FOR FORMAL LANGUAGES AND
LINGUISTIC RESEARCH

Chapter 1

What Are Logic Grammars?

1. Logic Grammars — Basic Features

Logic grammars can be thought of as ordinary grammars in the sense of formal
language theory, in that they comprise generalized type-0 rewriting rules—rules of
the form : ‘‘rewrite o into 3,”’ noted:

a—-p

where o and P are strings of terminals and nonterminals. A terminal indicates a
word in the input sequence. A sequence of terminals takes the form of a Prolog
list. Nonterminals indicate constituents. In this text, they take the form of a Pro-
log structure, where the functor names the category of the constituent and the
arguments give information like number class, meaning etc.

Logic grammars differ from traditional grammars in four important respects:

1. The form of grammar symbols, which may include arguments representing
trees

The use of variables, involving unification
3. The possibility of including tests in a rule

The existence of processors based on specialized theorem - provers that
endow the rules with a procedural meaning by which they become parsers or
synthesizers as well as descriptors for a language (e.g., Prolog and its
metalevel extensions)

2. Grammar Symbols

Logic grammar symbols, whether terminal or nonterminal, may include arguments
(as opposed to the formal grammars of Chomsky’s hierarchy). One of the uses of
these arguments is to construct tree structures in the course of parsing. A tree such
as

noun-phrase

determiner noun

the boy

6 PART 1. Grammars for Formal Language and Linguistic Research

is represented in functional notation:
noun-phrase(determiner(the),noun(boy))
More generally, arguments have the form:

T00U(fy, =+ ulp)

where root is an n-ary function symbol (in our example, the binary symbol
noun—phrase), and the ¢;s are arguments, which in turn represent trees. Note that
argument is used recursively. By convention (as in Prolog) arguments written in
lower case are constants. An argument can also be a variable, in which case it
stands for a particular but unidentified tree or constant. Variable names start with
a capital. When n=0 (i.e., when the root has no branches), the argument is a con-
stant (e.g. ‘‘the,”” ‘‘boy’’) or a tree consisting of just the root. Here are two more
sample trees and their functional representations: (Terminal symbols are noted in
square brackets.)

gives-to
N\
ann rover jill ’
N\

A"

gives-to(ann,rover,jill) a,.(b,.(c,[D))

In the second of these, the root is the symbol ““.”’, usually used to denote ‘‘con-
catenation.’”’ Trees constructed with this binary symbol, as above, are called lists
and, in logic grammar are interpreted as a string of terminals. They have the
simpler equivalent notation:

[a,b,c]
Summarizing, a logic grammar symbol has the form:
name(ry, - - - ,t,)

where the arguments ¢; are either constants, variables, or trees in functional nota-
tion. Terminal symbols are enclosed in square brackets to distinguish them from
nonterminal ones.

Here are some (unrelated) sample logic grammar rules:

1. verb(regarder) --> [look].
2. verb(third,singular,regarder) --> [looks].
3. a,[b] --> [b],a.

