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PART 0

INTRODUCTION AND HISTORIC OVERVIEW

The principles of logic programming have been applied to formal and natural
language processing since 1972, mainly through the Prolog language. Starting
from applications such as question answering systems, many interesting problems
in natural language understanding were studied with the new insight that logic is a
programming tool ~ an insight very much in line with previous uses of logic in
computational linguistics. Thus, areas such as formal representations of natural
language, grammar formalisms, methods for analysis and generation, and even
very specific linguistic aspects such as coordination evolved in directions typical
of the context of logic and of logic programming. In the formal language area,
logic grammars have been used for implementing recognizers and compilers, also
with good results, particularly in the conciseness of the systems obtained.

Traditionally, logic was considered one of the most appropriate tools for
representing meaning, due to its ability to deal formally with the notion of logical
consequence. Representing questions and answers in logical form typically
required some extensions to classical predicate calculus. In the recent past, logic
was also used to represent the information to be consulted in question-answering
systems. Here also, departures from first order logic were necessary, and in gen-
eral, parsing knowledge, world knowledge and the meaning of questions and
answers were represented and handled through quite different formalisms, result-
ing in the need for interfaces to link them together.

The introduction of Prolog (PROgrammation en LOGique) by Colmerauer and
others made it possible to use logic throughout, minimizing interfaces from one
formalism to another. World knowledge can be represented in logical form,
through facts and rules of inference from which a Prolog processor can make its
own deductions as needed. Extracting logical consequences amounts to
hypothesizing them and letting Prolog deduce, from the facts and rules stored,
whether they indeed are logical consequences, and, if they are, in which particular
instances. Questioning and answering reduces to hypothesizing the question’s
content and letting Prolog extract instances, if any, that make the question true
with respect to the world described. Those instances become answers to the ques-
tion.

Parsing itself can be left to Prolog, by representing it as a deductive process — i.e.,
grammars can be described as facts and rules of inference, and sentence recogni-
tion reduces to hypothesizing that the sentence in question does belong to the
language, and letting Prolog prove this assumption.

The Prolog equivalent of grammar symbols, moreover, are logic structures rather
than simple identifiers. This means that their arguments can be used to show and
build up meaning representation, to enforce syntactic and semantic agreement, etc.
In other words, the very nature of Prolog facts and rules allow us to retrieve
instances from parsing that can tell us more than mere recognition: logical
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representation of the sentences recognized, causes of rejection, such as semantic
anomaly, etc. Thus Prolog is eminently suitable for linguistic work.

Nevertheless, writing substantial grammars in Prolog that could in practice be
used as parsers did require knowledge of the language (i.e., a computer specialist’s
mediation), and involved caring for details that belong to the nature of Prolog’s
mechanism rather than to considerations of linguistics or the parsing process
proper.

The introduction of metamorphosis grammars by A. Colmerauer in 1975 was the
first step in making Prolog a higher level grammar description tool. Although
these grammars are basically a syntactic variant of Prolog, they achieve two
important improvements with respect to Prolog’s syntax:

1. They allow the direct writing of type-O-like rules (in the sense of Chomsky’s
formal grammar classification); these rules can have more than one symbol
on the left hand side.

2. They hide string manipulation concerns from the user.

Prolog grammars can now be thought of as rewriting mechanisms which assemble
and manipulate trees rather than as mere procedures to be described in terms of
Prolog rules and facts. In present implementations, logic grammars are automati-
cally translated into Prolog, but they still remain a distinct formalism in their own
right, and they do make life easier for the non-computer specialist—e.g., for
linguists.

In 1975 then, all the pieces were laid out to build a new synthesis in the design and
implementation of natural language consultable knowledge systems. A. Col-
merauer exemplified in a toy system about family and friendship relationships how
these pieces could be put together. One of the authors, V. Dahl, developed the
first sizeable applications of this new synthesis: first an expert system for
configuring computer systems, together with R. Sambuc, and then a data base Sys-
tem with French and Spanish front ends. Both systems were written entirely in
Prolog. Logic was used throughout: as a programming tool, as the means for
knowledge representation, as the language for representation of meaning for
queries, and (in the form of Prolog’s hidden deductive process) as the parsing and
data retrieval mechanism.

Not all of these uses involved the same type of logic: for natural language
representation, Dahl used a three-valued set-oriented logical system; for
knowledge representation, she developed some Prolog extensions such as
domains, set handling primitives, etc. Yet other developments were needed to
solve problems specific to Prolog, such as dealing with negation and modifying
Prolog’s strict left-to-right execution strategy in order to provide a more intelligent
and efficient behavior.

These extensions, as well as the link between different logic formalisms used in
these systems, were also hidden from the user. From an implementation point of
view, the fact that logic was used throughout made the linking of different formal-
isms a much simpler task than in typical data base systems, resulting in a concise
formulation. For instance, the three-valued logic mentioned above was



implemented through a Prolog definition of how to evaluate its expressions, which
took less than a page of code.

These techniques were soon exported to other data base and expert systems con-
sultable in other languages (English, Portugese, etc); the main feature of the appli-
cation of these techniques was the striking ease with which the transposition was
achieved. An English adaptation of this system was used in a key paper by F.
Pereira and D. Warren—**‘Definite Clause Grammars for Language Analysis.’” This
article analyzed the logic grammar approach and compared it with the Augmented
Transition Network approach, concluding that the former approach was superior.

These encouraging results prompted further research: the techniques for language
analysis and for modifying execution strategy were adapted into the CHAT-80
system. M. McCord systematized and perfected the notion of slots and modifiers
that had been used in the earliest analyzers, achieving a more flexible strategy for
determining scope; F. Pereira developed the extraposition grammar formalism,
specifically designed to make left extraposition descriptions easier. Dahl and
McCord then joined efforts to produce a metagrammatical treatment of coordina-
tion in logic grammars, and developed as a by-product a new type of them called
modifier structure grammars (MSGs), these are essentially extraposition rules in
which the semantic components are modularly separated from the syntactic ones,
and for which the building of semantic and syntactic structure, as well as the treat-
ment of quantifier scoping, of coordination, and of the interaction between the
two, is automated. Further work on coordination was produced by C. Sedogbo
and L. Hirschman. The notion of automatic structure buildup that resulted from
Dahl and McCord’s work on coordination was isolated by H. Abramson into the
definite clause translation grammar formalism (DCTGs). In it, natural language
processing power is traded for simplicity (e.g., quantifier scoping, coordination
and extraposition are no longer automated), but for other applications, semantic
structure buildup is usually enough. The separation between syntactic and seman-
tic rules is also mentioned.

In 1981, V. Dahl generalized extraposition grammars into a more powerful for-
malism, called discontinuous grammars,! that can deal with multiple phenomena
involving discontinuity: left and right extraposition, free word order, more concise
descriptions, etc. Implementation issues were investigated jointly by the authors,
by Dahl and McCord, and by F. Popowich. A constrained version of these gram-
mars was investigated by Dahl and Saint-Dizier.

A more interesting subclass of the discontinuous grammar family was developed
by Dahl and investigated within her research group for the purpose of sentence
generation using Chomsky’s Government and Bindin g theory: static discontinuity
grammars (SDGs). In this subclass, movement phenomena can be described stati-
cally, and the power of type-0 rules coexists with the representational simplicity of
context-free-like rules (i.e., trees rather than graphs can depict a sentence’s

! The early publications use the lerm gapping instcad of discontinuous. This name was changed
in order to avoid evoking the wrong associations, since the linguistic notion of gap is a diffcrent
one.
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derivation). Hierarchical relationships, crucial to linguistic constraints in general,
are thus not lost, and linguistic theories can be accommodated more readily, by
expressing these constraints in terms of node domination relationships in the parse
tree.

Bottom-up parsing has been investigated by A. Porto et al., Y. Matsumoto et al.
and K. Uehara et al. Miyoshi and Furukawa have developed another logic pro-
gramming language specifically suited for object oriented parsing. M. Filgueiras
has studied the use of cooperating rewrite processes for language analysis.

The field is active and promising. This book intends both to introduce the main
concepts involving language processing developments in Prolog, and to discuss
the problems typically encountered and some of the alternatives for solving them.

After an in-depth presentation of the basic material, we provide a wide rather than
deep coverage of many of the related topics. Some bibliographic references are
mentioned within the text at places where they are directly relevant, and at the end
of each part we complete the picture with other relevant bibliographic comments.

Some chapters were written by one of the authors and revised, with suggestions
and comments by the other one: chapters 1 — 4, 6 — 8, 10; section 2 of chapter 11;
appendix I; and sections 1 and 2 of appendix I were written by V. Dahl.
Chapters 5 and 9; section 1 of chapter 11; chapters 12 and 13; and section 3 of
apppendix II were written by H. Abramson. Bibliographic commentaries were
written jointly.



PART I

GRAMMARS FOR FORMAL LANGUAGES AND
LINGUISTIC RESEARCH

Chapter 1

What Are Logic Grammars?

1. Logic Grammars — Basic Features

Logic grammars can be thought of as ordinary grammars in the sense of formal
language theory, in that they comprise generalized type-0 rewriting rules—rules of
the form : ‘‘rewrite o into 3,”’ noted:

a—-p

where o and P are strings of terminals and nonterminals. A terminal indicates a
word in the input sequence. A sequence of terminals takes the form of a Prolog
list. Nonterminals indicate constituents. In this text, they take the form of a Pro-
log structure, where the functor names the category of the constituent and the
arguments give information like number class, meaning etc.

Logic grammars differ from traditional grammars in four important respects:

1. The form of grammar symbols, which may include arguments representing
trees

The use of variables, involving unification
3. The possibility of including tests in a rule

The existence of processors based on specialized theorem - provers that
endow the rules with a procedural meaning by which they become parsers or
synthesizers as well as descriptors for a language (e.g., Prolog and its
metalevel extensions)

2. Grammar Symbols

Logic grammar symbols, whether terminal or nonterminal, may include arguments
(as opposed to the formal grammars of Chomsky’s hierarchy). One of the uses of
these arguments is to construct tree structures in the course of parsing. A tree such
as

noun-phrase

determiner noun

the boy
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is represented in functional notation:
noun-phrase(determiner(the),noun(boy))
More generally, arguments have the form:

T00U(fy, =+ ulp )

where root is an n-ary function symbol (in our example, the binary symbol
noun—phrase ), and the ¢;s are arguments, which in turn represent trees. Note that
argument is used recursively. By convention (as in Prolog) arguments written in
lower case are constants. An argument can also be a variable, in which case it
stands for a particular but unidentified tree or constant. Variable names start with
a capital. When n=0 (i.e., when the root has no branches), the argument is a con-
stant (e.g. ‘‘the,”” ‘‘boy’’) or a tree consisting of just the root. Here are two more
sample trees and their functional representations: (Terminal symbols are noted in
square brackets.)

gives-to
N\
ann rover jill ’
N\

A"

gives-to(ann,rover,jill) a,.(b,.(c,[D))

In the second of these, the root is the symbol ““.”’, usually used to denote ‘‘con-
catenation.’”’ Trees constructed with this binary symbol, as above, are called lists
and, in logic grammar are interpreted as a string of terminals. They have the
simpler equivalent notation:

[a,b,c]
Summarizing, a logic grammar symbol has the form:
name(ry, - - - ,t,)

where the arguments ¢; are either constants, variables, or trees in functional nota-
tion. Terminal symbols are enclosed in square brackets to distinguish them from
nonterminal ones.

Here are some (unrelated) sample logic grammar rules:

1. verb(regarder) --> [look].
2. verb(third,singular,regarder) --> [looks].
3. a,[b] --> [b],a.



