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Preface

This textbook is designed for use in a standard physics course on optics. The
book is the result of a one-semester elective course that has been taught to
juniors, seniors, and first-year graduate students in physics and engineering
at Duke University for several vears. Students who take this course should
have cumipietea an ntroauctory physics course and math courses through
differential equations. Electricity and magnetism can be taken concurrently.

Modemn Optics differs from the classical approach of most textbooks on
this subject in that its freatment of optics includes some material that is not
found in more conventional textbooks. These topics include nonlinear optics,
guided waves, Gaussian beams, and light modulators. Moreover, a selection

of optional material is provided for the instructor sc that the course con-

tent can reflect the interest of the instructor and the students. Basic deriva-
tions are included to make the book appealing to physics departments, and
design concepts are included to make the book appealing to engineering
departments. Because of the material covered here, the electrical engineer-
ing and biomedical engineering departments at Duke have made the corre-
sponding optics course a prerequisite for some of their advanced courses in
optical communications and medical imaging.

Befare the 1960s, the only contact that the average person had with
optics was a camera lens or eyeglasses. Geometric optics was quite adequate
for the design of these systems, and it was natural to emphasize this aspect
of opfics in a curriculum. The approach used introduced the students to
the theory and to examples of the appl.cation of the theory, accomplished
by a description of a large variety of optical instruments. The reason for
this approach was that lens design is found to be quite tedious. and the
optimization of a lens design is more easily described than accomplished.

Today the student is exposed to many more optical systems. Everyone
encounters supermarket scanners, copying machines, compact disk players,
holograms, and discussions of fiber optic communications. In the research
environment, lasers, optical modulators fiber optic interconnects, and non-
linear optics have become important tools. Upon graduation, many students
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PREFACE

will be called on to participate in the use or the development of these modern
optical systems. An elementary discussion of geometrical optics and a review
of classical optical instruments will not adequately prepare the student for
these demands. ‘

This book was written to provide both a fundamental study of the prin-
ciples of optics and an exposure to actual optics engineering problems and
solutions. To include new material has meant that some of the topics cov-
ered in classical texts had to be removed. A large portion of the conventional
treatment of geometrical optics was deleted, along with a discussion of classi-
cal optical systems. In their place were a geometrical optics discussion of fiber
optics and a discussion of holography. Rather than describe a host of optical
systems, a few optical systems, such as the Fabry—Perot interferometer, are
examined using a variety of theories. This book emphasizes diffraction and
the use of Fourier theory to describe the operation of an optical system.

To allow the development of a one-year course in modern optics, a
number of topics have been added or expanded. A discussion of electroop-
tic and magnetooptic effects is used to introduce optical modulators, and
a discussion of nonlinear optics is constructed around second harmonic
generation. Because of the importance of birefringence in optical modulators
and nonlinear optics, an expanded discussion of optical anisotropy has been
included. This is a departure from most texts that ignore anisotropy because
of the need to use tensors. In modern optics, anisotropy is an important
design tool, and its treatment allows a discussion of the design of optical
modulators and phase matching in nonlinear materials.

The first two chaqters review wave theory and electromagnetic theory.
Except for the section on polarization in Chapter 2, these chapters could be
used as reading assignments for well-prepared students. Chapter 3 discusses
reflection and refraction and utilizes the boundary conditions of Maxwell’s
equations to obtain the fraction of light reflected and refracted at a surface.

Chapter 4 discusses interference of waves and describes several instru-
ments that are used to measure interference. Two of the interferometers,
Young’s two-slit experiment and the Fabry—Perot interferometer, should
receive emphasis in discussions of this chapter because of the role they play
in later discussions. An appendix to this chapter provides a brief introduction
to some of the design techniques that are used to produce multilayer inter-
ference filters. All of the appendices in the book are included to fill in the
gaps in students’ knowledge and to provide some flexibility for the instructor.
The appendices may, therefore, be ignored or used as the subject matter for
special assignments.

The treatment of geometrical optics, presented in Chapter 5, is not
traditional. It was through the reduction of traditional subject matter that
space was obtained to introduce more modern topics. A brief introduction to
the matrix formalism used in lens design is presented, and its use is demon-
strated by analyzing a confocal Fabry—Perot resonator. Geometrical optics
and the concept of interference are used to analyze the propagation of light
in a fiber. This introduction to fiber optics is then extended through the use of
the Lagrangian formulation to p+ pagation in a graded-index optical fiber.
The first part of the chapter demonstrates the formal connection between
geometric optics and wave theory. Most students would rather not cover
this material and, therefore, it is usually omitted. The connection between
the matrix equations and the more familiar lens equations is established in



Appendix 5-A. Because of their importance in the Graduate Records Exam,
aberrations are treated in Appendix 5-B.

The Fourier theory in Chapter 6 is presented as a review of and refresher
on the subject. It is an important element in the discussion of the concept of
coherence in Chapter 8, and Fraunhofer diffraction in Chapter 10. The dis-
cussions of optical signal processing, Appendix 10-B, and imaging, Appendix
10-C, draw heavily on Fourier theory.

The discussion of dispersion given in Chapter 7 could be delayed and
combined with the other chapters on material interactions (Chapters 13 and
15). It is included here to justify the discussion of coherence in Chapter 8.
The discussion of dispersion in materials had as its objective the development
by the student of a unifying view of the interaction of light and matter.

The development of coherence theory in Chapter 8 is built around
applications of the theory to spectroscopy and astronomy. It is a very difficult
subject, but building the theory around the methods used to measure coher-
ence should make the subject more intelligible. '

Both the Fresnel and Gaussian wave formalism of diffraction are intro-
duced in Chapter 9. The Gaussian wave formalism is used to analyze a Fab-
ry—Perot cavity and thin lens. This chapter can be skippad, and the material
introducing the Fresnel-Huygens integral can be covered in a single lecture.

The Fresnel formalism is expanded and discussed in Chapters 10 and
11. Fraunhofer diffraction is treated.from a linear-system viewpoint in Chap-
ter 10, and applications of the theory to signal processing and imaging are
presented in Appendices 10-B and 10-C. These two appendices are the most
important in the book. Fresnel Diffraction is introduced in Chapter 11, where
it is used to interpret Fermat's principle and analyze zofie plates and pinhole
cameras. In Chapter 12, Fresnel theory is used to discuss the operation of a
hologram. Chapter 12 also includes a simple quasigeometric theory that is
used to highlight the fundamentai properties ot a hologram.

Chapter 13 uses the introduction of polarizers and retarders as a basis
for the development of the theory of the propagation of light in anisotropic
materials. The treatment of anisotropic materials is expanded over the con-
ventional presentation to allow an easy transition into the discussion of light
modulators in Chapter 14. The many geometrical constructions used in the
discussion of anisotropy are confusing to everyone. To try to make the mate-
rial understandable, only one construction is used in Chapter 13. To provide
the student with reference material to aid in reading other books and papers,
the other constructions are discussed in the appendices.

The discussion of modulators in Chapter 14 provides an application-
based introduction to electro- and magnetooptic interactions. The design
of an electrooptic modulator provides the student with an example of the
use of tensors. The material interactions presented in Chapters 14 and 15
require the use of tensors, a subject normally avoided in an undergraduate
curriculum. Tensor notation has been used in this b. ~k bec .ise it is key
in the understanding of many optical devices. Some familiarity with tensors
removes much of the “magic” associated with the design of modulators and
the application of phase matching discussed in Chapter 15.

The subject of nonlinear optics in Chapter 15 is developed by using
examples based on frequency doubling. Only a few brief comments are
made about third-order nonlinearities. The additional discussion of third-
order processes is best presented by using a quantum mechanical viewpoint.
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It was thought that this would be best done in a separate course. The
material presented in this chapter would prepare the student to immediately
undertake a course in nonlinear optics.

Enough material has been included for a one-year course in optics.
Chapters 2 to 4, 6, 9 (excluding Gaussian waves), and 10 contain the core
material and could be used in a one-quarter course. By adding Chapter 7
and 8 along with Appendices 10-B and 10-C, a one-semester course can be
created. The instructor can alter the subjects discussed from year to year by
adding topics such as Appendix 4-A, the guided wave discussion of Chapter
5, or the discussion of holography in Chapter 12 in place of Appendices
10-B and 10-C. A less demanding one-semester course can be created by
ignoring Chapter 8 and by substituting Chapter 5, Appendix 4-A, or possibly
Chapter 12. In anticipation of developing skill and knowledge, the subject
matter and problems increase in difficulty as the student moves through the
book.

A number of people provided help in the preparation of this book.
Those who provided photos or drawings are identified in the figure captions.
Their generosity is most appreciated. Dr. Frank Del.ucia provided the initial
motivation for writing the book. Many ideas and concepts are the result
of breakfast discussions with A. VanderLugt. The book would never have
gone past the note stage without the equation writer, MacZqn, written by
Dennis Venab'e. Thomas Stone provided ideas, photographic skills, and
encouragement during the preparation of most of the photos in this book.
His enthusiasm kept me working.

A very special thanks must go to Nicholas George. He loaned me equip-
ment and lab space to prepare many of the photos. His encouragement pre-
vented me from shelv'ng the project, and his technical discussions provided
me with an improved understanding of optics.

Robert D. Guenther
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Wave Theory

The theory of wave motion is an important mathematical model in many
areas of physics. A large number of seemingly unrelated phenomena can
be explained using the solution of the wave equation, the basic equation of
wave theory, The wave theory is a fundamental part of modern quantum
theory and the solutions of the wave equation are used to explain a number
of classical phenomena. Familiarity with the wave theory developed in the
study of light will aid in the understanding of such diverse physical processes
ds water waves, vibrating drums and strings, traffic dynamics, and seismic
waves.

Mathematically, the basis of wave theory is a second urder, partial
differential equation called the wave equation. In this chapter, a vibrating
string will be used as an illustration to aid in visualizing the various aspects
of the wave theory. Initially, a traveling wave on a string will be used to
find the functional form of a one-dimensional wave and to derive the wave
equation. Following a discussion of the energy and momentum associated

“with the traveling wave, the one-dimensional model associated with the string

illustration will be expanded to three dimensions. The displacement of the
wave discussed in this chapter is assumed to be a scalar function and the
theory is called a scalar wave theory. In the next chapter, the vector wave
theory will be discussed.

Christian Huygens {(1629-1695) developed the wave theory of light in
1678. Isaac Newton (1642~1727) proposed a counter theory based on a
particle view of light. Newton'’s scientific stature resulted in only a few scien-
tists during the 18th century, for example Leonard Euler (1707-1783) and
Benjamin Franklin (1706-1790), accepting the wave theory and reject-
ing the particle theory of Newton. In 1801 Thomas Young (1773-1829)
and in 1814 Augustin Jean Fresnel (1788-1827) utilized experiments to
demonstrate interference and diffraction of light and presented a theoretical
explanation of the experiments through the use of the wave theory. Fresnel
was able to explain rectilinear propagation using the wave theory, thereby
removing Newtn » wrin dection to the wave theory. The acceptance of

9250070
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2 WAVE THEORY

i

TRAVELING WAVES

Fresnel’s theory was very siow, and the final rejeciion of Newton's theory
did not come until the measurement of the speed of light in water and air
by Jean Bernard Léon Foucault (1819-1868). The velocity measurements
were a key element in the rejection of Newton’s theory because the particle
theory required the speed of light in a medium to exceed the speed of light
in a vacuum in order to explain refraction. The measurements by Foucault

“ showed the propagation velocity in a vacuum to exceed the velocity in water.

Before the equation of motion of a wave is discussed, a mathematical expres-
sion for a wave will be obtained. We will assume that a disturbance prpp-
agates without change along a string and that each point on the string
undergoes simple harmonic motion (see Appendix 1-A for a brief review of
harmonic motion}. This assumption will allow us to obtain a simple math-
ematical expression for a wave that will be used to define the parameters

characterizing a wave.

A guitar string is plucked creating a pulse that travels to the right and
left along the x axis at a constant speed c. In Figure 1-1, the pulse traveling
toward the right is shown. The pulse’s amplitude is defined as v = f(x,t)
and equals vy at position x; and time t;. This amplitude travels a distance
c(tz — 1) to the right of x1 and is described mathematically by

y=flx, 1)
Assume the pulse does not change in amplitude as it propagates
flx1, 1) = flxz, t2)
where x2 = x1 + c(tz — t;). If the function has the form
y = flct — x) (1-1)
then the requirement that the pulse does not change is satisfied because
flxr, 1) = flety = x1)

£x2, t2) = flcty — x2) = fleto — x1 — clta — ;)]

= fleth — x1)
[4
L
x1
!
|
X Xz
Y1
' !
- g
X X

“}"—c(tz—tl)——'{

FIGURE 1-1. Propagation of a pulse on a guitar string. The amplitude does not change as
the pulse propagates along the string. '




Using the same reasoning, we can show that an unchanging pulse
traveling to the left, along the x axis, with speed c is described by

v =glx+ct)

The expression y = f(ct— x) is a shorthand notation to denote a function
that contains x and t only in the combination (¢t — x), i.e., the function
can contain combinations of the form 2(ct — x), (t = x/c}, (x —~ ct), {ct -
x)2, sin{ct — x), etc., but not expressions such as (2ct — x) or (ct? — x?).

To the assumption of an unchanging propagating disturbance is now
added the requirement that each point on the guitar string oscillate trans-
versely, i.e., perpendicular to the direction of propagation, with simple har-
monic motion, The string in Figure 1-1 lies along the x axis and the harmonic
- motion will be in the y direction. The point on the string at the origin (x = Q)
undergoes simple harmonic motion with amplitude Y and frequency w (the
angular frequency w = 27v will be used throughout this book; the linear fre-
quency v is defined in Appendix 1-A). The equation describing the motion
of the origin is

v =Y cos wt

The origin acts as a source of a continuous train of pulses (a wave train)

moving to the right. .
A function of {ct — x} that will reduce to harmonic motion at x = Q is

v = flct— x) = Ycos -‘Cg(ct—-x)

This is called a harmonic wave.
A number of different notations are used for a harmonic wave; the one

used in this book involves a constant

k=2 (1-2)
C

called the propagation constant or the wave number and is written
' y =Y cos (wt — kx) (1-3)

The values of x for which the phase {wt — kx) changes by 2 is the spatial
period and is called the wavelength A. Let x2 = x; + A, so that

wt— kxg = wt — kx; — kA = ot — kx; — 27
thus

2r
k= X (1-4)
since k = wi/c = 2m/c, we also have the relationship ¢ = vA.

To determine the speed of the wave in space, a pciat on -2 wave
is selected and the time it takes to go some distance is measured. This is
equivalent to asking how fast a given value of phase propagates in space.
Assume that in the time At = (t; — 1), the disturbance y; travels a distance
Ax = (xp — x1), as is shown in Figure 1-1. Since the disturbance at the two

points is the same, i.e., y1, then the phases must be equal
wt — kx = wlt + At) — kix + Ax)

Ax @

At k

TRAVELING WAVES 3




4 WAVE THEORY

WAVE EQUATION

In the limit as At — O, we obtain the phase velocity

dx w

C= — = —
dt  k
The adjective “phase” is used because this velocity describes the motion of
a preselected phase of the wave. Another method that can be used to obtain
the propagation speed associated with a wave is to define the phase velocity
using the result from partial differential calculus

\

r?y)

at

(25)__ o
y

ot sy k
=,

This equation may be verified by applying it to (1-3).

To generate the differential equation of motion of a wave propagating along
a string, we must lock at a small section of the string as a pulse passes
by. We are going to assume that we only have small amplitude pulses
so that the tension in the string is not changed appreciably as the pulse
passes by. As a consequence of this assumption, we have dy/dx << 1;
therefore, the deflected string shown in Figure 1-2 makes an angle 6 with
the horizontal such that cos 8 = 1 and sin 8 = tan 8 = Jy/dx (we use partial
derivatives because the deflection is a function of both time and position;
in this derivation, we hold time constant). With these approximations, the
components of tension at position x in Figure 1-2 are

T.=Tcos 8~=T

T, = T sin ewa—;

oy
3]

At position x + Ax in Figure 1-2, the slope is also small since A@ is small

[cos(8 + AO) = 1], resulting in
Te + ATy =T

9+ A6
-

y+A4y

x 1+ Ax

FIGURE 1-2. The string is deflected as the pulse passes by. The tension T is decomposed
into components in the x and y directions.




