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PREFACE TO THE
AMERICAN EDITION

Hilbert’s Fourth Problem, as presented by Hilbert himself (see the
Introduction), is stated in rather broad and general terms. In brief,
the problem consists in the investigation of metric spaces which
admit a geodesic mapping onto a projective space or a domain of
such a space.!* Hilbert’s Fourth Problem is related to the founda-
tions of geometry, the calculus of variations, and differential ge-
ometry.> We shall consider Hilbert’s Problem as a problem in the .
foundations of geometry and, in this regard, following Hilbert, we
" formulate the problem more précisely as follows.

' Suppose we take the system of Axioms for Euclidean geometry,
drop those axioms-involving the concept of angle, and then supple-
ment the resulting system with the “triangle inequality,” regarded as
an axiom. The resulting system of axioms is incomplete and there
exist infinitely many geometries, in addition to Euclidean geometry,
which satisfy these axioms. Hilbert’s Problem consists in describing all

*Note, Superscripts refer to Notes beginning on page 88.
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2 PREFACE TO THE AMERICAN EDITION

possible geometries satisfying this system of axioms. The present
work is devoted to the solution of the problem as stated in this form.
The problem will be considered from the standpoint of all three
classical geometries, namely those of Euclid, Lobachevski and Rie-
mann. :

It turns out that the solution of the problem, as formulated here, -
reduces to the determination of all of the so-called Desarguesian
metrics® in projective space; that is, metrics for which the geodesics
are straight lines. Such metrics were obtained by Hamel (see [12]),
under the assumption of sufficient smoothness. However, a complete
solution of the problem requires the determination of all De-
sarguesian metrics, without, assuming smoothness, subject only to the
condition of continuity which is guaranteed by the axioms.

The occasion for the present investigation is a remarkable idea due
to Herbert Busemann, which I learned about from his report to the
International Congress of Mathematicians at Moscow in 1966. Buse-
mann gave an extremely simple and very general method of con-
structing Desarguesian metrics by using a nonnegative completely
additive set function on the sets of planes and defining the length of
a segment as the value of this function on the set of planes
intersecting the segment.

I suspected that all continuous Desarguesian metrics could  be
obtained by thif method. The proof of this in the two-dimensional
case strengthened my belief in this conjecture and I announced a
general theorem in [ 18]. However, it turned out later, on making a
detailed investigation of the three-dimensional case, that the com-
pletely additive set funcfion figuring in Busemann’s construction may
not satisfy the condinion of nonnegativity. Therefore, the result given
here, while preserving its original form, assumes that other conditions
are satisfied. ‘ '

This book is addressed to a wide circle of readers and, accordingly,
it begins with a review of the basic facts of the geometry of
projective space (Sections 1, 2). A description of the axiom systems
of the classical geometries is given in Section 10. A detailed
exposition of the core of the problem, as formulated here, is given in
Section 11, together with illustrative examples. .

I regard it as my pleasant duty to thank the publisher V. H.
Winston & Sons for the-interest showri in my work.’

A. V. Pogorelov



TRANSLATION EDITOR’S
FOREWORD

It has been slightly more than seventy-five years since David
' Hilbert presented a list of twenty-three outstanding and important
problems to the Second  International Congress of Mathematicians
held in Paris in 1900. Surprisingly, very few books have appeared
about this list of problems; despite the tremendous progress during
the last three quarters of a century toward the solutions of prac-
tically the entire list of problems.

Hilbert’s fourth prloblem (find all geometties in which the “ordin-
ary lines” are the “geodesics™) is particularly attractive. The problem
is elementary enough that it can certainly be understood and
-appreciated by a beginning graduate student of mathematics. How-
ever, its sofution though of a generally elementary character brings
together ideas and tools from many diverse and interesting branches
of mathematics: geometry, analysis (especially ordinary and partial
differential equations), and the calculus of variations.

A partial solution, under strong assumptions, to Hilbert’s fourth
problem was already obtained by Georg Hamel in 1901. This present

3



4 TRANSLATION EDITOR’S FOREWORD

work by A. V. Pogorelov originated from a remarkable idea of
Herbert Busemann (in his report to the International Congréss of
Mathematicians of Moscow in 1966).. Pogorelov slightly reformulates
Hilbert’s problem, and proceeds on the basis of this new idea to give
an extremely elegant solution—a real mathematical gem.

This book is extremely well written. Most of the prerequisites
(with the exception of standard portions of advanced ch'lculus) are .
developed as needed. The reader who studies this volume will not
only discover how one particular problem is solved, but will also pick
up a lot of interesting mathematics on the way.

The English translation was reviewed by Eugene Zaustmsky, who
also supplied a very useful set of notes that gu1de the reader, to more
literature on the subject.

Pogorelov’s book is a welcome addition to the mathematlcal
literature. It will especially be appreciated by those interested in
geometry and the foundations of geometry. '

Irwin Kra



~ INTRODUCTION

In the year 1900, at ‘the Second International Congress of
Mathematicians in Paris, David Hilbert formulated a number of
problems whose investigation would, in his opinion, greatly stimulate
the further development of mathematics. His fourth problem was
devoted to the foundations of geometry, and consists .of the follow-
ing, as stated by Hilbert himself ([13], pp. 449-451):

“If, from among the axioms necessary to establish ordinary
euclidean geometry, we exclude the axiom of parallels, or assume it
as not satisfied, but retain all other axioms, we obtain, as is
well-known, the geometry of Lobachevski (hyperbolic geometry). We
may therefore say that this is a geometry standing next to euclidean
geometry. If we require further that that axiom be not satisfied
whereby, of three points of a straight line, one and only one lies
between the other two, we obtain Riemann’s (elliptic) geometry, so
that this geometry appears to be the next after Lobachevsky’s. If we
wish to carry out a similar investigation with respect to the axiom of
Archimedes, we must look upon this as not satisfied, and we arrive

-8



6 HILBERT’S FOURTH PROBLEM

thereby at- the non-archimedean geometries which have been in-
vestigated by Veronese and myself [14]. A more general question
now arises: Whether from other suggestive standpoints geometries
may not be devised which, with équal right, stand next to euclidean
geometry. Here 1 should like to direct your attention to a theorem
which has, indeed, been employed by many authors as a definition of
a straight line, viz., that the straight line is the shortest distance
between two points. The essential content of this statement reduces
to the theorem of Euclid that in a triangle the sum of two sides is
always greater than the third side—a theorem which, as easily seen,
deais solely with elementary concepts, i.e., with such as are derived
directly from the axioms, and is therefore more accessible to logical
investigation. Euclid proved this theorem, with the help of the
theorem of the exterior angle, on the basis of the congruence
theorems. Now it is readily shown that this theorem of Euclid cannot
be proved solely on the basis of those congruence theorems which
relate to the application of segments and angles, but that one of the
theorems on the congruence of triangles is necessary. We are asking,
then, for a géometry in which all the axioms of ordinary euclidean
goemetry hold, and in particular all the congrpence axioms except
the one of the congruence of triangles (or all except the theorem of
the equality of the base angles in the isosceles triangle), and in which,
besides, the proposition that in every triangle the sum of two sides is-
greater than the third is assumed as a particular axiom.

One finds that such a geometry really exists and is none other
than that which Minkowski constructed in his book, Geometrie der
Zahlen [16] and made the basis of his arithmetical investigations.
Minkowski’s Geometry is therefore also a geometry standing next to
the ordinary euclidean geometry; it is essentially characterized by the
following stipulations:

1. The points which are at equal distances from a fixed point O lie
on a convex closed surface of ‘he ordinary euclidean space with O as
a center. _ )

2. Two segments are said to be equal when one can be carried into
the other by a translation of the ordinary euclidean space.



INTRODUCTION 7

In Minkowski’s geometry the axiom of parallels also holds. By
studying the theorem of the straight line as the shortest distance
between two points, [arrived ([15] and [14], Appendix I) at a geometry
in which the parallel axiom does not hold, while all other axioms of
Minkowski’s geometry are satisfied. The theorem of the straight line
as the shortest distance between two points and the essentially.
equivalent theorem of Euclid about the sides of a triangle, play an
important part not only in number theory but also in the theory of
surfaces and the calculus. of variations. For this reason, and because I
believe that the thorough investigation of the conditions for the
validity of this theorem will throw a new light upon_the idea of
distance, as well as upon other elementary ideas, e.g,, upon the idea
of the plane, and the possibility of its definition by means of the
idea of the straight line, the tonstruction and systematic treatment of
the geometries here possible seem to me desirable.

In the case of the plane and undér the assumption of the
continuity axiom, the indicated problem leads to the question treated
by Darboux ([10] p. 59): Find all variational problems in the plane
for which the solutions are all the straight lines of the plane—a
question which seems to me capable and worthy of far-reaching
generalizations [16}.” ’

This book is devoted to Hilbert’s fourth problem [13] and
contains its solution when formulated as follows: Find to within an
isomorphism all realizations of the axiom systems of the classical
geometries (Euclidean, Lobachevskian and elliptic) if, in these sys-
tems, we drop the axioms of congruence involving the concept of
angle and supplement the systems with the “triangle inequality,”
-regarded as an axionr. .

The first and, indeed, the only work devoted to Hilbert’s problem
in this formulation is due to Hamel [12] the other works being
devoted to the study of special Detarguesian spaces. Hamel showed
that every solution of Hilbert’s problem can be represented in a
projective space, or a convex domain of such a space, if congruence
of segments is defined as equality of their lengths in a special metric,
for which the lines of the space are geodesics. (Such metrics are
. called Desarguesian metrics.) Thus, the solution of Hilber¥s problem



8 HILBERT’S FOURTH PROBLEM .

was reduced to the problem of the constructive definition of all
Desarguesian metrics. Hamel solved this problem under the assump-
tion of a sufficiently regular metric. However, as simple examples
show, regular plane metrics by no means exhaust the class of all -
plane metrics, and the axioms of the geometries under consideration
imply only continuity of the metrics. Therefore, a complete solution
- of Hilbert’s problem entails a constructive definition of all continuous
Desarguesian metrics and this is the problem to which the present
work is devoted.

A. V. Pogorelov



§1. PROJECTIVE SPACE

By a point of projective space we mean an ordered quadruple of
real numbers x = (x;, Xx;, X3, X4), which are not all zero.
Proportional -quadruples are regarded as equivalent, and define the
same point of space. The numbers x,, X, x3, x4 are called homo-
geneous coordinates.* _

By a plarie we mean the set of points satisfying a linear equation

axs + azxz + asxy + ax, =0,

and by a line we mean the intersection of two distinct planes. Thus,
- line is specified by a system of two equations

asxy + a4 asxs + aix, = 0,
as x4+ azx; + asxs + aix, =0,

wher_e the rank of the matrix

ay Gz a3 a;
\ala; a; a
equals two. It is convement to use vector notation for the equatlons
of lines and planes. We set

AsX == ayXy -} Arxz -+ a3%3 -} auxy,

. and can then write the equation of a plane in the form a-+*x=0,
and the equauon of a line in the forma * x = 0,4’ * x = 0, where
@ and 4’ are linearly independent vectors. We now note some
propemes of hnes and planes. :
Let x' and x" be two distinct points of a line. Then every pomt of
the line has a representation x = N'x' + \'x", where X' and \" are
real numbers, not both zero. Conversely, every point with this

representation belongs o the line. In fact, the line is specified by a
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system of equations
a ‘x=0, a *x=0 1)

and the points x' and x" satisfy this system. Since the rank of the
system is two, every solution x of the system is a linear combination
of the independent solutions x' and x"', i.e., x = A'x’ + X''x”. The
fact that every point x with this representation satisfies the system
(1) is obvious. In view of the indicated representation of a point x of
the line, in terms of two given distinct points x” and x"’, we conclude
sthat a line is uniquely determined by any two of its distinct points.
Hence, no more than one line passes. through two distinct points,

We next show that there is a line passing through any two distinct
points. Let the given points be x' and x"' and consider the system of
equations

a°x =0, a-x"=0 @)

in a. Since the points x' and x”' are distinét, the rank of the matrix

X X x5 X
rr r? rr e
\X1 X2 X3 X4

-of the system 1s two. Therefore the system has two independent
solutions 4’ and &”, and the line specified by the equations -

ad-x=0 a"+x=0

passes through the points x’ and x”". Q.E.D.

On every line there are two distinct points. In fact, leta' * x = 0
d'cx= 0 be the equations of the line. This system of equat:ons a -
x = 0,4a" * x = 0 in x has two linearly independent soluuons x' and
x", since the rank of the system is two. These solutions give two
distinct points of the line determined by the intersection of the

planesa’ + x = 0,4" - x = 0./Q.E.D.
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Three distinet points x', x”', x''"' lie on the same liné if and only if
the rank of the matrix

’ r r ’
Xy X2 X3 X

a4 e rr rr
Xy Xz X3 X

ree tre  trs rrr

Xy Xo X3 X

is two. In fact, if the points x’ and x" are distinct, then x""' = N'x’ +

. N"x", by what has been proven. The rank of the mafrix is less than
three because its rows are linearly dependent. Conversely, if the rank
of the matrix is less than three, it must be two since the points x’

and x" are distinct. But, then, the third row can be expressed as a- . .

linear combination of the first and second rows; ie., x'' = \'x' +
N'x"". This means that the point x'"’ lies on the line passing through
the points x' and x"'. Q.E.D.
There is one and only one plane passing through three non-
”n I"

collinear points. In fact, let x', x", be the given points and
consider the system of equations

a*x'=0, a+x"=0, a-x"=0 3)
in @ The rank of the system is three since the points x’, x”, and x""’
are noncollinear. The system (3), therefore, has a nontrivial solution
a, which is uniquely determined up to a nonzero factor. The plane 4
* x = 0 passes through the given points and is unique, by the
uniqueness of the solution of the system (3). Q.E.D.

There is one and only one plane passing through a line and a point
not lying on the line. Let us mark two distinct points on the line and
draw a plane through them and the given point. This plane contains
the given line and passes through the given point. Every plane passing
through the given line contains the two distinct points which we
marked on it. Our plane is unique because three distinct noncollinear
points of a plane determine the plane uniquely. Q.E.D:

A line that does not Ize in a plane intersects the plane in one and
onlv one point. Let a' - x = 0 be the equation of the plane and let

g8"*x=0andd" - x = 0 be the equations of the line: The system
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of homogeneous equations @’ * x = 0,4" + x=0,a""*x=0
always has a nontrivial sclution x, and this solution gives‘a’ point
lying on the intersection of the line and the plane. If there were two

distinct - such points, then, by what has been proven, the line would

lie in the plane, contrary to hypothesis. Q.E.D. :

Two distinct lines, lying in the same plane, interjsect in one and
only one point. Let a be the plane and let g, and g, be the distinct
lines lying in the plane a. Take a point x that does not lie in the
plane a, and draw planes &, and @, through x and the lines g and
&2, respectively. The planes @, a;, a, intersect and the point of
intersection belongs to the lines g, and g, . Since the lines g, and g,
are distinct, they cannot have other points of intersection, by what
has already been proven. Q.E.D.

Let x and y be two points on a line. Then, every point of the line,
other than x and y, has a representation Ax 4-py, Ap = 0. A set of
points of the line, for which Ap has a fixed sign, is called a (projective
line) interval with endpoints x and y. On a projective line there are two
intervals with endpoints x and y. We have An >> O on one of these
intervals and Ap << O on the other. This definition of line.interval is
obviously independent of the normahzatxon of the coordinates of the
endpomts x and y

Let x!, x2, x? be three noncollinear points. The ﬁgure consisting of
these points and three intervals joining them in pairs will be called a

'projective triangle if there exlsts a plane which does not intersect the

triangle.® The points x x*, x® are called the vertices of the triangle.

“and the intervals j Jmmng them are called the sides of the triangle.
A projective triangle satisfies the Axiom of Pasch: If a plane does not

pass through the vertices of a tnangle and intersects one of its s:des ‘

then' it intersects one and only one of the other two sides of the.
trigngle. The proof is as follows. Let 2 * x = 0 be the equation of a
plane which does not mtersect the triangle. Thena « x{ #0,i= 1,2, 3,

since this plane does not pass through the vertices of the triangle. We -

may assume, without loss of generality, that @ - x/ > 0, as this can
always be achieved through a suitable normalization of the points x¢.
Because ¢ - x*¥ > 0, the points of the side of the_triangle joining the
vertices x and x/ have a representation u = Axi 4 px, for which
Mt > 0. In faét; if we had Kp<0,,wg %ﬁnd values of A and p for

,, e

whicha ru=x+ x‘+pa =0; that

lﬁiﬁd'f.:x‘xf of the tnangle- -

t-p6 |

-



