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BOUNDS FOR CYLINDRICAL PROJECTION CODES

Gang Yang*, Dong Li and Donald L. Schilling

Department of Electnical Engineering
The City College 6f New York
New York, NY 10031, USA

A

Some methods of analyzing the error per-

formance of cylindrical Projection codes are put forward.
The main features of these methods are

1) To use combinatorial generating functions to obtain
the weight distribution of a cylindrical Projection code.

2) To make use of the weight distribution of a cylindrical
Projection code to obtain the upper bound and lower bound
of the code.

Itis suppested that the same procedure could also be
used to obtain the error performance of an ordinary block
Projection code with only a little change of the computer
program.

I. INTRODUCTION

Application of error<correcting codes in communication
systems is now widely done inmodern communication to obtain
high performance with small transmitting power. There are many
different error-correcting codes. Itis well known that the more
parity bits, the more ertors can be corrected. However, the
number of parity bits cannot be arbitrarily large, because the
more .parity bits per codeword, the less energy per bit, and
~ therefore, the higher the input bit error rate. So, looking for a
code which is closer to Shannon's limitis one of the major
direction of moderns communication research. -

The Pro_,ecuon code is an attempt to obtain ao ideal code.

-The Projection code is very easy to encode and decode, and
from simulauons, it kas been determined 10 have very good
performance.  All of these reasons make ita desirable code.
However, because of its very abrupt: performance curve, itis
difficult to investigate and evaluate it performacce at reason-
able input error rates. Therefore, itis necessary
code theoretically.

The Projection code has three basic forms {1]{2]. The data
rows are put on the top of the parity rows and the parity checks

are made along the slope lines. The Projection Code can be a. )

- convolution-like code ora block-like code. For block Projection
code, there can be either a cyhudncal block code, where the
number of the bits in a block is finite, but with the end and the.
“head connected - together, or a noncylindrical block code, that
is, 2 block code with a beginning and an end. Inthis paper, only
the cylindrical block Projection code is considered.

The first form is called the Basic Projection Code, or P1 code. .

Insuch. a block code, ‘the parity bits check only the information
bits on the same parity line and do not check any other panty
bits, )

to’ anahze this -

The second form is called the Partial Autoconcatenation
Projection Code, or P2 code. In this code, the parity bits on a
given row not only check the information bits, but also check
the other panty bits which are on the rows closer to the data
and on the same parity check line.

The third form is the Total Autoconcatenation Projection
Code, or P3 code. Inthe case of P3, the parity bits check not
only the information bits, the panty bits on the rows above them,
but also the parity bits on rows below them.

In this paper, combinatorial technology has been used to
obtain the weight distnbution of the Projection code. And then,
from the weight distnbution of that code, the upper bound and
lower bound of that code has been obtained.

II. THE METHODS FOR UPPERBOUNDING -
AND LOWERBOUNDING THE PROJECTION
. 'CODE '
If the weight distribution of a code is given, the output bit

error rate bounds of the optimum decoder can be obtained [3].
Denote M as the sumber of the codewords with weight w,, M,

as the number of the. codewords with weight w,, ...;M , as the
p¥mber  of codewords ‘with  weight  w,, where
w, <w,<w,..<w, and m is the maximum weight of the
code. Since the Projection code is a linear code, itis necessary
to consider transmitting the codeworc <vith all zero elements.
Let C() stand for the j** codeword, and |C(j)istand forits
weight. Let Vbe the received codeword, p,be the input biterror
rate and P, be the output bit error rate. Let C,,, stand for the -
codeword with weight w,and M stand for the total pumber of

" codewords.

‘A. THE DERIVATION OF THE UPPERBOUND

Suppose the codeword with all zero elements is transmitted.
When the received word is closer to C(j) than to any other .
codeword, the optimum decoder willthink C(j) is transmitted.
Heace, IC(j)Ierrors willbe produced. Ifthe received word is
at the same . distance’ from  two codewords,
1C¢iH| and 1C(1)], and is further from any other codeword,
then the opumum decoder willthink | C(j)|is transmitted with
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the probability 50% and | C(1)|is transmitted with the probability
50%. So | C(j)]errors and |C(1)] errors willbe produced with
the probability S0% respectively.

.

=

DY

The Weight of C(1),C{2),C(3) and C{¢) Is W
Fig.1 The Dlagram for Upper Bound Analysis

Suppose there are four codewords with the minimum
Hamming weight and the transmitted codeword is the all zero
codeword which is called codeword 0. This is illustrated inFig.1.
Ifthe received code Vis closer to some C()than to codeword
0, the optimum receiver will make a wrong decision. The
probability that the received code is closer to C(j) than to
codeword 0 is the probability of the received code Vfalling into
the balf plane cut by the bisect line of C(j)and 0 and on the side
of C(j). The shaded area is the area where a wrong decision will
be made ifthe received code V falls into the area. N times the
output bit error probability is equal to the summation of the

product of the probability of V falling into every rectangle and -

the weight of the codeword in that rectangle. Tke probability
that V fails into the rectangle of C(j)is less than the probabiiity
that Vis closer to C(j) than to 0. Based on this discussion, an
upper bound caa be found. )

Mathematically, itcan be shown that

NP =Y lehl-PLCUY-VI<lc-VELvizj

=i

/transmitting all zero codewecord)
=1 ) o . : . 3
+ L_Elc(l)l'l’(lc(ﬂ-l | =]C(i)-V].if such i exist
i=1 3
and IC()‘)-VI<IC(I)-V| forvi#i and ViI#j
/transmitting all zero codeword}
o )
<Y kepl-plcn-visivl 48!
i=1

/transmitting all zero codeword}

oy M
32 1eWI-2(E,~V]=1V]

~1

/transmitting all zero codeword})

- Z‘Nl'wl"’(lc'p-y‘ <ivi
/transmitting all zero codeword)
o-i'Z.N,-w,-P(lcu,'V|-|V!

/transmitting all zero codeword}

B. THE DERIVATION OF THE LOWERBOUND

Letus draw a circle with radius taround every codeword as
shown in Fig 2. Any received code falling into the circle with
radius t of a codeword, willbe corrected to this codeword. If
the weight of the code is w, thea w errcrs willbe made. Further,
suppose there are 1o errors outside the shaded area

Obviously, P, > )_jolc.lxpp,(w). where P, (w) stands for

the probability of the received word falling into the circle of 2
codsword with weight w.

e ©

The weight of C{1).CR.CE) e T} s W

Fig.2 The Diagram for the Lower Bound Analysis
Let N(w,1;s)be the number of error patterns of weight !
that are at distance s from 2 codeword of weight w and d,,,
be the minimum weight of the codewords. For linear codes,
N(w. l:s)is the same for every codeword of weight w. Itcan
be shown that in the binary case, [4]

N-w\{w ' »

N(w,l;s)= &

oot 154) ;-.-Zno( k )(J) 7 gk
l'('l-..lo

and therefore,

I v :
P,> Z ZP:(I"F.)"-‘N(W-I:S)

x" t N=-1l
232 PP TN dL) @)

-'I‘|

Po"':,'ii Z

w|{Culpi(1-p) 'N(w. l:s)
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II1. APPLICATION GENERATING FUNCTION

TO PROJECTION CODES

Itis known that generating functions are & convenient tool
for handling selection and arrangement problems with some
constraints {5],{6]. The Projection code has a high degree of
structure and seeking codewords and pseudocodewerds
which satisfy the parity check equations is a type of selection.
Therefore, itis a useful trial to apply combinatorial procedures
to obtain the weight distribution of the extended code.

Letus start with an example. Inthis example, we willfind the
number of solutions with various weights of following equations

X, * X+ Xx3+x,0 mod 2
X,+ X3+ X, +XxXs=0 modqz
X3+ x,*xg+x;=0 mod 2

0<x,s1

1G]
0sx,<1
0<x,51
0<x,<1
0<xg<1

There are three equations. Each equation will affect the
solution and therefore they must be considered together. Let

us use x/to stand for x,~ J,w/to stand for the summation of

weight in the ith equation to equal j,and use w'’/to stand for the
summation of all variables to equal j.

In this exampie, the variables are binary, therefore jhas enly
two possible values, namely 0 or 1. We can use x§+ x ito stand
for the geperating factor of x ;and let the weight be equal to the
exponent of the variable. But in order to see the weight directly,
we would like to use the exponents of w, to stand for the
summation of all the variables of ith equation. Therefore, use
x7+xiwito stand for the generating factor of X, in the third
equation. and so oa.

The operatiopal rules for the generating function are then
AN

j'x,’w".mk and j= I\

X!oxg = x/ xy., i*k
\ 0. i=k, j=1 /

0-x/=0 s)

H -1
w'ow'=w!

-t .
. w!™', i=k
w)ow, = .
ww,, 1*k

The rules are based on the fellowing:
1}. The weight of any variable can be counted only once;
2). Any variable can take only one value at a time;
3). The weight of the summation of two variables is equal to the
summation of the weight of each variable.
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For the first equation the generating function is
g, = (x5 xjw,)(x3+ xw,)(x5+ xjw,)(xI+ xjw,)
=xOx0x3x9+ x,x,x3xwl+ x x3x xjwi
«x,x0x3x wie xOx,x xjwie x{x,xx w0}
+ x9x3xyx ,wie x,x,x,x,w)

(6)
For the second equation the generating function is
g2 = X3x3xIxT+ X, XX {x5WE+ X, X532 X 3w]
0 0 2, .0 °,2, .0 ° 2
4 XXX (X W3+ XX 3 X XgWa+ X2 X3 X (X 5W)5

0.0 2 4
+ XXX X gWa+ XXX (X gW,

)
The generating function for the third equation is

(] [}
gy =xx3xqxge x, xax {xqwie x, x3x , xqw]

o_0 2 ° 0,2 o [ 2

+ X, XIxix Wi+ xTX X XgWi+ X X3 X (X gW)
0_o0 2 4
+XTXIX X gWy+ X XX (X gWy

(8)

Only the terms with even powers of winthe above generating
functions remain because only the variables taking the value
corresponding to the even powers of w may satisfy the
equations. Now let w, = wy=w,y=w. The total generating
function for the above equations is

g=g9,'9:°9>
0 0.0 ,0 " s
-x,xgxg:c.xsw XN G XX (X gW

(9)

LS

Having interest inthe number of solutions of various weight,
replace x/with 1, and obwain g =1~ w?® This result means that

the number of solutions with summation of 2l of the variables
equal to 0, is 1 and with the summation of all of the variables
equal to 5, is 1. This result can be easily verified by noticing the
symmetry of the equations.

In this example, it seems itis not pecessary to distinguish
various w,if one first calculates g, ,then G gaand lasdy, g.

However, distinguishing w/gives more freedom to the caleu-
lation, allowing us to multiply some of the factors of g, with
some of the factors of g, without any confusion. Inseme very
structured equatiops, this may save a lot of memory space.

Let us consider a P3 Projection Code with siopes 1, /2 2nd
1/3, one data row (row a), three parity check rows (rows b, ¢
and d) and a block length of 7.



The code block is shown in Fig.3.

Fig. 83 A P3 Cylindrical Projection Code

To describe it simply, consider the parity check line with
slope 1/3, and passing through the point (b, 6) as B6, call the
parity check line with slope 1/2 and passing through the point
(C, 2) as C2, call the parity check line with slope 1 and passing
through the point (d, 0) as DO, and so on. Further, use d, to
represent the variable at the position (b, 6), cto stand for the
variable at the position (¢, 2), dqto stand for the variable at the

position (d, 0) and so on. BE, C2 and B2 stand for lipear
equations under mod 2. For line DO, the parity check equation
is

a;+by,+c,+dy=0 mod 2 (10
and its generating function is
(ag*u,-w,,)(b:*bz'w”)(c?*c,'w,,)(d?,‘dc-w”)

' an
The parity check equation for line C2 is
a,+b+c,+dy=0 mod 2 (12)
acd the generating function is
(Q:*do'wcz)(b:*bo"”cz)(C;’cz'wcz)(dg‘do'wcz)
_ (13)
The parity check equation for line B6 is
Qp+bd,+cy+dy=0 mod 2 (14)
and :he corresponding generating fuanction is
(ng‘az'w,‘)(b:¢b,'w“)(c:‘c,W‘“)(d:*d°~w“)
15)

Now let us calculate the generating factor of the point d,

The factor is the product of all the factors which contain the
svmbol d,

(do+ do-wp)(do+ do'wta)(dg"do'wtc)
=(dg+ do’Woo‘wcz'w‘l)(d:‘dn'wu)
= (d0+d0 Wy Wey Wy w?) (16)

Because we will never meet o, again, we replace dqand
dwith 1 and set wpy = we, = wy, = w. Hence we obtain

1+B6C2D0w 7

Genperally, for mj point (i, j) in the block, we have the
corresponding generating factor

(1+B,0)'Cyay* Dygzy* - " w) (18)
where

y(I)=[h+i-(j-1)-spl(l)] mod h (19)
with s p I (1) stand for the inverse of the No. lslope.
0<iSk+r-1;

0<Sj<Sh-1; (20)
O0<isr-1;

The above expression can be explained intuitively. For
example, point dybas two possible values, either 1 or 0. Ifitis
1, then on line B6, there must be another bit which is 1 in order
to satisfy the parity check equation. Similarly, there must be at
feast another bit on line C6 taking I and at feast one bit on line
DO taking 1. So there must be such a factor as (1+B0.C6.D0.w)
in the geperating function.

Muitiply the generating factors along one parity check line
to obtain the product of the factors along this line, one can delete
any term which contains the symbol of the line, because after
that the same symbol willnot be present inany factor. Further,
for any slope line symbol, ifthe symbol is not present in the
factors to be calculated, then the terms which contain the line
symbol can be deleted. For example, after obtaining the product
of the factors corresponding to @, b,., ¢,. and d,, one
can deiete any term which contains the line symbol DO. Similarly,
delete any term which has the line symbol D1 after obtaining
the product of the factors of a;, b,. c,. and d,; delete
any term which has the symbol D2 in the expansion of the
product of the factors of @y, b,. ¢;. and d,; and delete
any term which bas the line symbol D3 afier obtaining the
corresponding  product. Fioally, multiple these four products
together and delete any term which has the line symbol B4.

Example

A P3 Projection code with block leagth 10, one data row,
three parity check rows and slopes 1, 1/2, 1/4. Table | gives
the weight distribution of the codewords. Bounds inthe bit error
rate are presented in Table 2.

313.14
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Table 1 The Wight Distribution

Weight " Number
0 1
8 10
10 4
12 150
14 " 180

16 1205

.Table 2 The Lower Bounds and Upper Bounds

Input £rror_‘. Lower Bound | Upper Bound
0.1 o.z_s%¥ 107 | 0.421x 10"
‘0-0_5 0.807 1-6‘; 0.834x107°
'o.ox 'o.v497x'10."v‘ o.71?x10"
0.001 oaq?é‘#fo”"' 6I7.o'o>_(10"° }
‘.0-'99.0'1' 0.698x 1_0_‘.“. 0.700x ;0';‘ )

0328

IV. DISCUSSION

Due to the fact that .pot all the solutions of the equations

based on the structure of a cylindrical Projection code corre. .

spond to codewords of the cylindrical Projection code, itcag
be shown that for some solutions, the parity check lines are
satisfied but the corresponding codes are not codewords. For
example, in the situation of P3, suppose "two data rows are aj)
1 and all other rows are all 0, The parity check lines are satisfied
but this pattern is not a codeword. for P3. However, if the

blocklength of a Projecyjon code is long enough, its real wm']n .

distribution can be identified with the solution of the equations
whep only small we:ghts are taken into consideration.

Another question is that when the number of bits ina block

" code become very large, both the area outside the cycles of

Fig.2and she area inthe overlapped rectangles of Fig.1 are very
large. In order to obtain tight bounds, the imput bit error rate
should be small.

V. CONCLUS IONS

The generating functions have been used to find the weight
distribution of the Projection Codes and from the weight
distribution of that code both the upper bound and lower bound
can be obtained.

The ‘generanng function bas a-wery strong Structure.
Therefore, we bope, based on the structure, some much
simpler algorithm can. be found. -
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' CONCATENATED MULTILEVEL CODING

K. Fazel' and A. Chouly
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" ABSTRACT

In a recent paper [10], a multistage decoding using eras- -

ing technique was studied. It was shown that for PSK and
QAM modulation schemes, more than 1 dB of coding gain
can be achieved with respect to a non-erased scheme. How-
ever, it is very difficult to get higher performances with single
codes because of the drastic increase in decoder-complexity.
An alternative solution consists in employing a_concatenatcd
scheme based on a parity check inmer code and a Reed
Solomon outer code. The outer code performance is strongly
“inflluenced by the decoding slratﬁy of the inner code. This
"“may follow a hard detection or a ML soft decoding combined
with an erasing procedure. In this paper, dilTerent stratcgics
of decoding the inner code applied in the case of a multilevel
coding are studicd. The [irst strategy recapitulates the clas-
sical method of decoding the concatcnated code. The second
strategy is based .on an erasing technique .using a hard de-
tection. The ML detection is applied in strategy 3. The fourth
strategy is the combination of the second and the third strat-
egies : using-a ML decoding and the erasing technique. For
each decoding strategy, the overall performances of the.sys-
. tem are derived analytically and the criterion of erasing is
defined. The analytical results show that significant coding
gain can be achicved by using the erasing technique with a
ML Viterbi decoder. :

1. INTRODUCTION

On an additive white Gaussian noise (AWGN) channel,
studies [1] have shown that trellis-coded modulation (TCM)
schemes can provide an asymptotic coding gain of 3 to 5 d
with simple codes. However, 'in high rate applications, the
hardware complexity of the Viterbi decoder required for TCM
decoding becomes prohibitive. Therefore, new families of

block-coded modulatipn (BCM) schemes {2] have been pro- .

posed. An interesting technique for implementation of BCM

schemes is the multilevel coding introduced by ‘Imai and -

Hirakawa [3-5]. It allows the usc of thc suboptimal multi-
stage decoding procedures that have performance/ complexity
advantages over maximum likclthood (ML) decoding. After-
wards, a large number of theoretical concepts were investi-
gated by many people in this context [6-9].

In a recent paper [10], a multistage decoding using eras-

ing technique was studied. It is shown that for PSK and ’

QAM modulation schemes, more than | dB of coding gain
can be achieved with respect to a non-erased scheme. The
decoding complexity remains nearly the same as a non-crased
decoding. However, it is very difficult to get higher per-
formances with single codes, because of the drastic increase

! Gierman Aerncpace Research Fst.. 8031 Oberpfaffenhofen. Germany

in decodcr complexity. An alternative solution consists in
employing a concatenated scheme in which the coding. proc-
ess consists in using two or more simple codes. Thus, it is a
practical means {11] of achieving long blocks or constraint

lengths, i.e. achieving a large coding gain with reasonabic

complexity {operations/bit).

One interesting combination is based on a parity check
(PC) inner code and a block Reed-Solomon (RS) outer code.
The outer code performance is strongly influenced by the de-
coding strategy of the inner code. This may follow a hard
detection or 2 ML soft decoding, combined with an erasing
procedure. |

The purpose of this paper is to study different strategies
of decoding the concatenated inner code, applied in the case
of a multilevel coding with a multistage decoding procedure.

The paper is organized as follows : Section 2 summarizes
the general principle of a concatenated multilevel coding
based on Ungerboeck’s partitioning. The multistage decoding
process employing different decoding strategics is detailed in
Section 3. The performance analysis for each decoding strat-

-egy. using an 8-PSK modulation is given in Section 4.- Scc-

ticn S gives simulation results for different decoding
procedures by assuming a spectral cfliciency of 2.7 bits/s/117.

It will be shown that considerable coding gain at a bit crror .

ratc’ (BER) of 10*! can be achieved with very simple codes.
F|na11)'.'5ectio_n 6 is for our conclusions. - . :

2. PRINCIPLE OF CONCATENATED MULTILEVEL
CODING o . :

- An important consequence of partitioning, exploited hy
Ungerboeck and others, is that coding gain may still result

- even if some bits mapped to high levels of partitioning are

uncoded since they arc protected by a large subset distance
{1]. Assuming a 2°-point signai constcllation 4, . with mini-
mum Euclidean distance 4, and able to transnlit m bits per
symbol. this set can bg partitioned into 2 (m < m) distinct
subsets §,, j=1, ..., 2. At each partition level, the minimum

- intra-subset Euclidean distance d, satisfies the following inc-
" qualities : B :

dy < dy < ... < d

Hence, the m bits b, j=L ., m (;vhcre ¥ represents the

bit mapped to the j* level of partitioning) are mapped to the

27 subsets and the (m — m) remaining bits select a signal point
in this subset. This process of mapping gives the classifica-

tion of m bits with different vulnerabilities to the channel

noise. This fact implics the use of different levels of coding
with appropnate protection capacities instead of one level of
coding for all-partition btits. This represents the pringiple of
multilevel coding which consists of utilizing m different codes’

313.2.1
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RS, (n K, D%
over GF{2%1}

RS, n,. K,.DY
over GF (292)

Serial
Input bits to
parallel RSa.s (e - Ky, O
. over GF (29&-1)
conversion

b; in
PC {ay+1, q,. 2}
p; 12 Selection
PC (gt . 93,20 of the
i - tevel
v, ,i=1,..N
b; (B-1) -
PCigz.,+ 1.85,4.2) Subset Si
bg ()
PCing+t.ng.2)
Symbol
selection
in S,-

Fig. 1 : Principle of concatcnated multilevel coding.

with different levels of protection, to encode the correspond-
ingbit &, j=1, .., m

The squared minimum Euclidcan distance of the multi-
Icvel coding verifies [S] :

d = min (§,d);j= 1., m+l, withé;, =1

where &, is the Hamming distance of the code for the j* par-
tition level.

Consequently, the asymptotic coding gain of a MI. dc- A

tection is given by :
G,(dB) = 10 log (d’R | d3)

where R is the total coding rate.

Hence, to obtain a high coding gain, the muttilevel cod-
ing is optimized if :

6 = 6;... 2 9

To assume large &, (especially large 4,), one can usc a
single code with a powerful error correcting capacity, which
results in an increase of decoder complexity. An alternative
solution is to use two or more simple codes instcad of one
guarantecing the same distance 4, In the latter, it should be
noted that the issued coding distance §; is the product of sc-
veral (/) concatenated codes distances /) :

Aéjsl){xl);x...x[}{

So. to achieve large valucs of §,, it is important to choosc an
appropriate value for D} , i.e. the appropriate simple codes.

One interesting combination is based on /=2 concat-
enated codes : a PC inner code and a RS outer code.

Fig. 1 illustrates the principle of the schemc : X informa-
tion bits are demultiplexed into m blocks K, j=1, ..., mand
m biocks are encoded. The (m —1) first blocks are coded by
powerful concatenated codes (which correspond to the more
vulnerable bits). The outer codes arec the wecll known
RS,(n, k, DY) codes over a Galois Field GF (2%, wherc
K, =~ kg (j=1, ..., m—1). Then cach symbol (g, bits) of
RS, is coded by a PC code E(q,+ 1, q.2) . j=1, ... m—1.
So the corresponding Hammung distance 8, 1s 20°. The last
block j=m is coded only by the PC code E; (nz+ t,n3,2),
where K- is a multiple of nz, ie. Kz = h x n3.

Let Ny = (g+1)m = h(n;+1) =N, j=1, .., m—1
{which we assume in the sequel), the process of coding can
Eecdcscribed ‘by a matrix structure as used in the design of

M' .

The coded bits (j=1, .., m) and uncoded bits
G=m+ 1, ..., m)atleveljare denoted by ¥/,i=1, ..., N.

The choice of RS and PC codes is based on thc small
decoding complexity :

— The symbol of the RS code is the information part of the
inner code. Errors in the inner codeword affect only one
symbol of the RS code. So no interleaving is needed be-
tween these two codes ;

— To decode each level, only one RS decoder circuit is needed
(if. E. is over the same GF), since the decoding process is
performed step by step. ’

The Juter code performance is strongly influcnced by the
decoding strategy of the inner codc.

3. CONCATENATED MULTISTAGE DECODIN
STRATEGIES

13

It is well known that the optimum decoding strategy is
maximum-likelihood decoding (MLD). This involves corre-
lating the received waveform with each of the 2X% waveforms
corresponding to the codeword of signal space. Gencerally, as
the value of YK, is very large, this method becomes prohib-
itively complex. A suboptimum decoding mecthod calicd
multistage decoding (8] having a better performance/ com-
plexity trade-off than MLD can be performed.

Let U = (U, ..., Uy) be the transmitted block of N
symbols (corresponding ‘to ¥, j=1, .., mi=1, .., N)
Since the channel is corrupted by noise, the received block
will be p = (p,, .... p») - From p, we try to retrieve the
transmitted bits &/, j=1, .., m, i=1, .., N.

The decoding process is performed by a successive csti-
mation of &/, &, ..., &' . The estimate of b/ indicated by b,
i=1, .., Niscarried out by using p and b}, b2, .., & .

Since we assume the same PC inner code and the same
codeword length for the outer code (of course with different
code rates), for (m — 1) levels, wec need only onc RS and one
PC decoder (Fig. 2). The RS decoder has difTerent correction

capacities, which can correct up to 1, = L(D' - 1)/2] symbol

€rTors.
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Fig. 2 : The concatenated multistage decoder.

FFor the m™ [evel, we need only a parity check decoder.
For cach level j,j=1, ..., m+1, a different hard detcctor
o,_, is needed.

To estimate & from p, a first estimation is carried out by

a,_,, by using b‘,', . I;{" . Then the concatenated decoding
(inner and outer decoders) gives the final estimate.

Different strategies of decoding can be performed, in
which we use the same RS outer decoder which can correct
errors and fills.the erasures [11] :

a, is a hard decision estimator and the inner decoder is an

error detector,

— a, 15 a hard/erasing decision cstimator and the inncr de-
coder is an error detector and it can {ill onc erasure [10],

— a, is a hard decision estimator combined with a M. Viterbi
inner decoder,

— a, is combined with a soft/erasing Viterbi inner decoder.

Without loss of gencrality to describe in more detail the
decoding process for cach strategy, let’s take an cxample of
8-PSK  modulation with two coded partitioning levels
{m = 2). Three estimators a,, a,, a,, two inner decoders and
one ctror-erasure RS decoder are needed.

A] First strategy

This first strategy is the classical method of decoding a
concatenated multilevel code :

— To estimate b}, i=1, ..., N, mapped to the first level of
partition, a hard decision is firstly carried out by a, in A,
(8-PSK) for all received symbols p,,i= 1, ... N. A first esti-

mate of b/, i=1, ..., N, noted b, i=1, ..., N is obtaincd.
Then the inner error-detector is performed for every (g, + 1)

estimated bits b,. If an error is detected, g, bits (the symbol
of RS outer code) are erased. Finally, the RS decoder is used
and gives the final estimation. At the output of the RS de-
coder, we dispose of only mgq, bits (b'}, i=1, ... mq, ). The
missing bits {n, bits) are the parity check hits of the inner
code, which were dropped befére the outer decoding. Then

the l;,', i=1,.. N bits are estimated by re-cncoding the
symbals of the RS decoder.

— To estimate b}, i=1, ..., N, mapped to the sccond parti-
tion level, a second hard-detection is carried out by «, in the

first-step partitioning subset B, (r = b)) for all received sym-
bols p, i=1, ..., N. A first estimation of b’,i=1, ..., N is
obtained. Following this strategy, since this is only coded by
a PC(n + 1, n, 2), just onc error is detectable in every (n + 1)
bits, but non correctable since there is no outer code. We will

immediately obtain the final estimation #?, i=1, ..., N.

— Finally, to estimate the Jlast remaining bits
b}, i=1, ..., N, we perform a hard-detection 1, in the second

step partitioning subsets C,, (q,=l;,"+ 25,’) over all reccived
symbols p,, i=1, ..., N. Since there is no coding, we imme-

diately have the final estimate B, i=1. .., N

B| Second strategy

This strategy of decoding is based on a hard/crasing dé-'
cision of a, [10]. To increase the reliability of the first hard-
decision estimators z,, (j = 1,2). we erase the estimated bits

b of a.,, if p; falls within the interval ! + , (/ is the hard-
decision threshold in the (j — 1)"-step partitioning subsets of
A,)- In this case, x,, provides three states 07, "1, and "X~
instcad of two, where X represents the erased bits. Then the
inner decoder will fill the erasure. In the case of an 8-PSK. the
decoding process is the following :

— Estimation of bits b},i= 1, ..., N, mapped to the first level
of partition : . : .

A hard-decision with erasing is firstly carried out by a, in A,
for all received svmbols p. i=1..... N. A first estimate of

bli=1,.., N, noted b,i=1 ... N is obtained. B
i=1,.., N is erased if 8], the estimated angle between the
received svmbol p, and its nearest point in A, satisfics these
incqualities :
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.18'_. -¥, <6 < i;— (¥, = 0= non-crasing)

Thus, a, gives three states "0°, "1° and erased state "X~ :
b e {0,1.X}. .

Then the inner decoding is performed for every (¢, + 1) esti-
mated b} . If one erasure is detected, the inner decoder fills it.
If one error in (q, + 1) bits or more than one erasure is de-

tected, g, bits (the symbol of RS outer code) are erased. Then
the RS outer code is decoded as explained in the first strategy.

— Estimation of bits b}, i = l,...., N, mapped to the second level
of partition :

By using 5,'. iw=1|,.., N, asecond hard-desision with crasing
is carried ‘out by a, in B,(r=25/) for all received symbols
pni=1,.., N.A first estimate of b},i= 1, ..., N is obtained.

Then b} is crased if 67, the estimated angle betwzen the re-
ceived symbol p, and its nearest point in B, satisfies these in-
equalities :

% -Y¥ < 6 < —E— (¥, = 0 = non-erasing)

Thus, b’ € {0,1.X}; i=1,..., N. Then the erasure PC de-
coder (which fills one erasure) is carried out over every

(n-+ 1) bits 5.‘ which pives the final estimation l;,’ ,
i=1, .., N

The final estimate of the remaining uncoded bits
ki~ 1, .., N, is the same as explained in the first strategy.

It should be noted that the optimum values of
¥, j=1.2 for the above exampic are ¥, =4 and ¥, = 10°

[10].
C| Third strategy

In this strategy, we exploited the fact that the codewords
of a PC code can be represented by a 2-state trellis. So we can
easily perform a soft Viterbi decoding to estimate the PC
codewords (Fig. 3). So, for every coded level, the hard deci-
sion estitnator a,_, can be combined with the Viterbi decoder.
The a,, estimates the two nearcst points of the reccived
symbols p,i=1,..., N , in the subsets and gives their
Euclidean distances to the Viterbi decoder. The Viterbi dc-
coder gives g, bits : the symbols of the RS error-correcting
outer decoder. Then the other processes of decoding arc
similar to the first and second strategies.

D{ Fourth strategy

In the second strategy, we exploit the presence of the
ambiguity of decision of a,, and introduced the notion of
erasing to increase its reliability. On the other hand, the third
strategy is based on a ML Viterbi decoding.

From these observations, a question arises : 7is it possible
to introduce the notion of erasing in the Viterbi decoder. in
order to increase the reliability of its decision ?7” The answer
to this question is yes, since an ambiguity cxists in cach ACS
{Addition- Comparison-Selection) of the Viterhi decoder.

So, this last strategy is the combination of the sccond and
third strategies, i.e. at the output of the Viterbi decoder, the
symbols are erased (for the concatenated level) if the decision
within the Viterbi decoder is ambiguous.

Fig. 3 illustrates the treliis of a PC (g, + 1, g, 2) code.
Each branch of this trellis is affected by the Euclidean dis.
tance, issued by a,,. In each state, the Viterbi decoder sclects
the path having the minimum distance. For instance, as Fig.3
shows, if the difference of the cumulated squared distances
ﬂd’)‘, {d)). of two paths (A) and (A’) respectively, is smal] :

( e — (@l < ¢, , the decision within the Viterbi de.
coéer is ambiguous.

In this strategy, the erasing technique is introduced after
the Viterbi decoding, if the chosen path contains an ambigy.
ity.

S
— Parity bit

Vitert: decoder :© Searchwng the ML path
AZIth A
3t

1djha P
1djhA°
| S —

patn A’

Fig. 3 : Trellis of the parity check code (¢ + 1,4,2).

Iir.the next section, we will examine how to find the op-
timal value of ¢, and to evaluate the performances of the dif-
ferent decoding strategics.

4. PERFORMANCE EVALUATION

The overall performance of the system depends on the
respective performance of cach level of coding. This per-
formance can be mcasured by the BER at the output of the
system for a given signal to noise ratio (SNR). For cach level
Jj, we derive the bit error rate P,. The BER is the mcan value
of P, which is upper bounded by :

m m
BER < L Y kry+ N Y Py
- j=1 jou
(’"—m)N-&-ZKJ ! fmm
J=1
For the concatenatcd coded levels, P, is the BER at the
output of the RS decoder. For a RS (n, &, D) codc which can

correct up to v symbol errors and can fill w erasurcs, and in
the worst case adds no more than ¢, errors, P, is given by :

1 ' . -
g, Z (to+9)P(vw), j=1,..,m=-1 m

ez DY

i

Py <

where :
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and:v *

o= (), 2y rera-a-

where P, and @, are respectively the error and erased symbol
rates at the output of the inner decoder.

gy

For the single coded level (j= m) P, is the probability
of error at the output of the inner decoder.

For ng;i'tl - m, P, depends mainly on the proba-

Bility of detection in 7 tHe Y- -step partitioning subscts of 4,.

So, the system performance depends strongly on P, i.e.
P, and Q, In each strategy, we try to minimize P,. Let us take
the above example to compute P, for diffcreat strategies in
an AWGN channel.

Al First strategy

In this strategy, for the first level of partition, the ex-
pression for the symbol-error rate P, and the symbol-erased
rate Q, are given by : . -

P;-‘z(q;l)erfcz(osinnlﬁ)
Q) = (g + 1) erfe{asin 7/8)

with «° = R/N, (N, is the one sided noise spcctral density),
P, is given bv (1) and the expressions of -, and 7,
(Baves'rule) are given by :

P, + erfc(a J2/2)(1—P,) °

Pelz

1
7
P4 Pa1=1,) + -%— erfe(a) (1= P) (1= P,)

Bl Second strategy

The computation of P, for this strategy is given in [10].
We recapitulate bricfly the results :

\q+ ! erfc* (o sin @, )

le(q; 1)(!7_fc(ﬂ' sin ®',) — erfc(osin @, )):
+ (g Verfc{asin ;)

with «pl=—;‘-+'v,,,,, O’,'—-%—‘*}'.,,,.and. Y, oaa

tonr

P, is derived by using the expression (1), and the ex-
pressions of P, and P,, (Bayes'ruie) are given by :

Py~ % P, + [(’”2’ l)(erfc(a sin®'y) — erfelo sin ®;) Y
+ (n+ 1) erfe (o sin <1>2)](1 ~ P

+ ¥y, ®y=T— Yo, and Yo =100

Pa) + 5 erfe(@) (1 = PR (1 = Py)

LI Third strategy

The inner decoder follows the principle of MLD decad-
ing, hence the expression of P, is given by (non-erasing) :

Py=qlg+ Verfc (a2 sin n[8) .

P, is given by (1) and P,; and P,; are given also by :
Pox 5 P+ 2erfe(o) (1 - Po)

Pox % Pall=Py) ++ erfe (@) (1~ Pu) (1 = Puy)

Hence the .(quarcd minimum equivalent distance of the
first level is 242(r + 1) where ¢ is the error correcting capacity
of the ocuter code.

Since the second level is coded only by a PC code and
there is no coding in the third level, the squared minimum
distance of the system is given by :

(@ai)s = min [245(: + 1), 24}, o5 ]
= min {2+ 1), 4]

with d, = 2 sin (n/8).

Dj Fourth strategy

As we have seen, the Viterbi decoder chooses the path in
the trellis having the minimum distance. But, when the dif-
ference between two cumulated distances is small (less than
¢, {or the p® level), the decision of choosing the correct path
will not be very reliable and will be erased.

Thus, for the first level of partition, the cxpression of
svmbol error rate P, and symbol erased rate @, are given by:

Pi~glg+ Veric(dal2}

Q,=q(g+ D[ erfc{dal2) — erfc(d[29)])
&

J7 4,

withd = J2 4, + Landd = J2 4 ~

£,
J7 4,
For high SNR, the BER at the output of the outer de-

coder is given by the two terms Pi*" or gf**" .

chce the squared- minimum cquivalent dmancc of the
first level is :

(t+ 1) min {4,247

This distance is maximal if &° = 247

From this expression, we can easily derive the opumal
value of ¢, :

Erope = 273 (3~ 1/7)
= 0.201

T'or this value of £, the coding gain with respect to a
non-erased scheme can be easily derived :

d'z(:
G = 10 lOg i ‘Opl) )
adr, =M y

= 1.37dB

313.25

0333



The cxprccsuom of P,and P, arq the same as thc third
strategy. .

Finally, the squared minimum Euclidean dlstam.c for this
strategy can be derived by : :

(@hin)e = 'min [+ 1) d (e, 4]
5. EXAMPLES ’

The performances of the following concatenated code
using an 8-PSK modulation, for different decodmg strategies,
are derived :

—First ievel the inner code is a PC (9,8,2) code and the
outer code is a RS(40,34,7) code dcl'mcd over GF (2 )

— Second level: this level is coded on!y 5)' a PC (20,19.2)
code, ’

~ And the third level is uncoded.

In Fig. 4, the bit error rate curves versus F,/N, for the
.-above strategics are plotted. These curves show that for
BER = 10", the second strategy provides a coding gain of 0.9
dB with rcspcct to the first strategy. Although the third
strategy is based on 2 ML decodirig, it has ncarl¥ the same
performance as the second strategy for BER = 10", since the
third strategy has a higher error cocflicient. But the fourth
strategy provides 0.6 dB of coding gain with- respect to the
third strategy.

BER

. 107

10
10-¢
0-®

‘m"‘v“ -

Eb/ NO .
Fig. 4 1 The performances of difTerent decoding strategies.

These results show that the erasing technique applicd
with difTerent strategics of decoding of a concatenated muiti-
level coding performs well. The decoding complexity is nmxlar
to a non-erased decoding.

6. CONCLUSIONS

In this_paper, we have developed different decoding
techniques for concatenated multilevel coding schemes. For
each decoding strategy, the performances of the system have
been derived analytically. The results have shown that on an *.
AWGN channel, significant coding gain can be achieved with

~“a ML Viterbi decoder using the crasing technique. This im-

provement is obtained without increasing the decoder com-
plexity with respect to the non-erased decoding technique.
Note that the criterion of erasing can be adapted for partic-

. ular channels such as the Raylelgh fadmg channel.
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Abstract

We consider bandlimited linear channels with
finite memory which is formally described by a
polynomial g{ ) with integer coefficients in the vari-
able - that represents the unit delay operator. We
present a signal processing method that operates
on blocks of finite precision samples of the channel
output. This signal processihg method is a "soft-
decision”™ algebraic decoder that operates in real
truncated p-adic arithmetic in which computation-
s are exact i.e. there is no no round-off error. It
furthermore lends itself to an efficient digital im-
plementation whose complexity is a linear function
of the memory size.

1 Introduction

We consider bandlimited linear channels with finite mem-
ory which is formally described by a polynomial g{:) with
integer coefficients in the variable - that represents the unit
delay operator. The roots of the polynomial g(z). which
generally are complex algebraic integers. determine a finite-
ly generated algebraic number field K.

We imbed this algebraic number field into a p-adic num-
ber field Q, in which the memory polynomial g(:) factors.
The zeroes of g{:z) in Q, are p-adic integers. The chan-
nel output is divisible by g(z) and hence in the absence
of noise will have zeroes at the same locations and of the
same order as g{(z) in Q,.

We present a signal processing method that operates on
blocks of finite precision samples of the channel output.
These numbers are transformed and used to compute syu-
dromes which are the values of the output p-adic function
as well as its derivatives of appropriate order at the lo-
cations of the zeroes of the divisor g{z). The syndromes
are then used in rational Hermite interpolation formulas.

oo e R

.computable in terms of generalized Vandermonde determi-

nants, to provide error pattern estimates which are sub-
tracted from the output samples. This signal processing
method is a "soft-decision™ algebraic decoder that oper-
ates in real truncated p-adic arithmetic in which compu-
tations are exact i.e. there is no no round-off error. It
furthermore lends itself to an efficient digital implementa-
tion whose complexity is a linear function of the memory
size.

2 Channel Model

We consider bandlimited channels with finite memory m

whose output samples {yx} are determined by the inputs
{zx} in the following manner

Ykgr = Zgr-j1l+r-, + Tryr
=1 :

The r coefficients {g,_;.j = 1....,r} are assumed to be
integers. If the unit delay operator is described by the
variable =. then the channel operation on the inputs {z:}
can be described in terms of the polynomial g(z)

PERERS S

=1

Generally the polynomial g(z) does not have integer root-
s. its roots {.,}] are complex algebraic integers. each of
which may have multiplicity o, as follows

L4
o(=) = TI(z —wi)™

=1
We will refer to {w;}} as to the null frequendcies of the
channel and to r = Y} o, as to the null order. The dis-
tinct null frequendes {i;}} extend the field Q of rational
numbers into a finitely generated algebraic number field K.
The channel output Y(o) = T, z¥:% has the zero divisor

i
tn
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g{z). This effectively means that the channel acts as an
algebraic encoder defined over K. However, the arithmetic
over which this encoder is operating prohibits an efficien-
t use of this structure. This motivates us to consider the
imbedding of the number field K into a p-adic number field
Q-

The p-adic number fields were introduced by Hensel [1].
For a fixed prime p, algebraic integers such as the nul-
1 frequendcies {w;}], can be described as power series ex-
pansions in p where the coefficients are integers in the
set {0.1....,p — 1}. For our channel model the admissi-
ble primes p for which we obtain an embedding of K are
those for which the null frequendies w; become units in Q,,
[C). Thus for each i, 1,..., s there exists y

P! = 1{modp)

The computation of the zeroes of the channel polynomial
g(=) in the field @,. in which it has been imbedded, can be
performed with any desired accuracy mod p/ through use
of Hensel’s Lemma [2].

Of particular interest are chanunel memory polynomials
g(=) that have roots which are roots of unity [3]. The p-adic
functions divisible by such a polynomial have zeros ihat
recur periodically [4]. The periods. of the form { V.V =
rm+ k.r = 0,...k — 1.m € 2}, will constitute natural
codeword boundaries for the stream of transformed channel
sample outputs.

3 Truncated p-adic Arithmetic

The output of the bandlimited channel is sampled and
quantized. The result is a stream of rational number-
s whose numerator and denominator are bounded. The
signal processor that operates on these numbers will make
roundoff errors. The use of truncated p-adic arithmetic as
a remedy to this problem has been suggested by Krishna-
murthy [3]. The theoretical basis for doing exact compu-
tations in this arithmetic is the strong triangle inequality
satisfied by the p-adic metric. A rigorous treatment can
be found in Dittenberger [6] where forward and backward
maps between the rational and the p-adic number domains
are defined. These maps provide the means to transfor-
m the rational numbers at the chanuel output into p-adic
numbers. perform computations in Q,, and then map the
resull back into the raticnal domain. A major question
is the meaning of these computations. In [6] a Lemima is
stated which provides a condition for the one-to-one cor-
respondence between computations with rational and with
truncated p-adic numbers. '

If the output of the quantizer consists of rational numbers
whose numerator has absolute value bounded by an integer
Af and their denominator has absolute value bounded by
the integer .V. a range we denote by €7, ther a necessary

and sufficient condition for the existence of a one-to-op,
correspondence between computations with these Dumbegy
and p-adic numbers whose mantissa is of length ! and whoge
exponent is an integer n is as follows

2NM < pli+in |

This condition has to be satisfied at the output of the p.
adic signal processor and may be violated during interme.
diate computations. It is possible to remap the quantizer
arithmetic range into a constrained set of positive integers
which are represented as p-adic integers, an assumption we
shall make in the sequel.

The use of truncated p-adic arithmetic not only allows for
roundoff error-free computation but also lends itself to an
efficient implementation. Initial work on the subject can
be found in {7}, where the arithmetic unit is defined algo-
ritbmically and where furthermore a Fast Fourier Trans-
form is introduced. The operations with compiex numbers
have p-adic counterpart. Thus for example if we use p-adic
numbers in base 5 and constrain ourselves to mantissas of
length 3, the 4-th roots of unity are represented as follows

1 — (1.0,0), =1 — (4,4.4),i — (2.1.2), —i — (3.3,2)

The operations of rational arithmetic are defined for these
pumbers and signal processing structures such as convolu-
tion, barinonic decomposition, etc. can be efficiently im-
plemented.

4 Algebraic Signal Processor

Given distinct pull-frequendes {w;}{ of total null-order r
which are imposed by the channel memory g(z). the p-
adic Fourier transforms of the sequence of channel output
samples at these nulls are

N :
Si=1p Yyt
k=1

The. higher order syndromes S\") are the Hasse deriva-
tives of S, wrnitten as the sums

A /k
S!(!.) = I/Prz (t)-‘l*“’f—h

k= N
In the absence of any noise these syndromes are all ze-
ro. Provided there are errors they will manifest them-
selves through nomzerc values of 5,“", where 1 = 1,...,8
and ¢, = 1.....g;. The subscript ¢ indexes the distinct ze-
1o location whereas the superscript ¢; indexes the order of
the derivative at the zero location. There exists a unique
p-adic polyvnomial P(z) determined by the syndrome data



which is computed by Hermite interpolation as follows 8]

) = Dir 2z !
P(z)=3 3 S =
A

LI 11

In this formula A is the determinant of a matrix M whose
typical entry is ({(A—1)!/(A—;))w}™%, A = 1,...,r and the
cofactor of a typical entry is Ai;,a. The columns of this ma-
trix are indexed by the pairs (i, t;) lexicographically ordered
and the rows by A. Its determinant A is a generalized Van-

dermonde determinant A = [,y ((ti— I 152} (wi —w;)79)

The existence of this interpolation formula depends on
the conditions that the zeros w; have to satisfy and which
are stated as follows ju;|, < pt¥/P~1)49) for some 8 greater

than 0, and mim,#lwk—u;,lp > p"s". The polynomi-
al P(z) computed by this interpolation formula satisfies
PN ;) = S¥ for ali (i,¢;). To exploit the existence of
this interpolation formula for the purpose of constructing
an aigebraic decoder we have to formulate a rationa! Hex-
mite interpeolation problem.

For this purpose we adopt the viewpoint of Goppa (9],
by which the stream p-adic integers, obtained as samples
of the channel output, are viewed as residuesof rational
functions whose poles belong to a finite set L and which
are furthermore divisible by the fixed polynomial g(:=) for
which we assunte that its null frequencies are all roots of
unity.

The set of possible poles L is the range of p-adic integers
allowed by the quantizer minus the zeros of the polynomi-
al g{=). The cardinality of the set L, iV, is the maximum
codewoerd size and the parity check matrix H is defined as
the interpolation basis for the linear vector space of all ra-
tional (L.g) functions in a manner analogous to Goppa’s
definition [9]. The syndromes S**! are obtained by evaluat-
ing these functions and their derivatives, given the received
residues. at the zeros of g(z). Tae rational Hermite interpo-
lation problem is defined as the computation of a rational
function e(z} = p(z)/q(z) such that S = ®(.;), where
the degrees of the polynomials p(:} and g¢(z) are [ and m
respectively. | < m. l + m = r. Recursive algonithms for
solving such an interpolation problem in terms of divided d-
ifferences are reported in the literature [10]. Effectively the
solution of the rational interpolation problem is equivalent
to the solution of the Keyv Equation {11] for an algebraic
decoder.

The main question is what are the constraints on the val-
ues [ and m. I+m = r, for which there exists a solution. 1.e.
how man+v errors can the described interpolation decoder
correct. Because we attach linear codes with linear spaces
of rational functions. as taught by Gouppa. the questicn of
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having efficient control on the code distance can be refor-
mulated into a question on the algebraic approximation
properties of the corresponding functions. An important
global property introduced by Mahler {12] which he called
perfectness applies to the functions which are divisible by 2
polynomial of the type used to model our chanrel memory.
This property is manifested in the polynomial interpola-
tion formula given in terms of Vandermonde determinants.
The rational interpolation problem for linear function s-
paces divisible by g(z) is solvable for arbitrary integers !
and m which satisfy [+ m = r.

5 Conclusion

We have introduced p-adic number and function theory
to signal processing. With the aid of this tool we show
that it is possible to implement an algebiaic decoder that
effectively takes advantage of the redundancy introduced
by the channel polynomial g(z).

In particaar when the roots of g{z) are located at rational
division points on the unit drcle, its performance can be
determined.
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