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Preface

Fluid dynamics problems have increasingly demranded the application of computer
techniques thus promoting considerable research in this field which has mainly been
based on finite difference methods. However the use of finite element techniques is
growing although there is still much work to be done in stability, accuracy, etc. of the
solutions. This growth is mainly due te its versatility but finite differences have the
advantages of sounder theoretical foundations. This Conference was organised to
bring together researchers in both fields and to foster what proved to be a profitable
exchange.

In particular, the Conference brought together aerodynamicists and hydro~
dynamicists. Aerodyrfamics has always been a discipline which attracted mathemati-
cians, whereas hydrodynamics appeals more to engineers. These constitute two
different approaches in research, engineers tend to emphasise the physical model and
mathematicians the formulation. Each of them has alot to learn from the other and it
is hoped that the Conference created a greater rapport between them.

It is clear from the Proceedings that variational techniques, such as finite clements
will become more important in fluid dynamics applications. This however should not
imply the abandonment of all other methods but rather their reappraisal. For
instance, finite elements are obviously inadequate to representinfinite domains but a
combination of them with some integral techniques could produce a method having
the advantages of both. Similarly, ways need to be found of freeing the finite
difference method from the severe restriction of regular grids and fulfilment of
all-—natural and essential—boundary conditions. These are only two suggestions
indicating the vast area still open to research.

Several papers on environmental topics such as pollution were also presented,
many of them using finite elements. (This led to a colleague pointing out the dangers
of finite element pollution?) No doubt a great deal more research will be conducted
in this field.

The main aim of this Conference was to foster an exchange of ideas between
researchers in different fields, in the hope of approaching, in a modest way, that level
of generality and simplicity which is the hallmark of true science.

C. A. Brebbia
J. J. Connor
Southampton, March. 1974
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DYRAMIC RELAXATION SOLUTION OF THREE
DIMENSIONAL SUBSONIC COMPRESSIBLE

OSCILLATORY FLOW

by
K. R. Rushton

University of Birmingham
U.K. -

SUMMARY

Vhen the equations of subsonic compressible
oscillatory flow are written in terms of the
real and imaginary parts of a velocity
potential, two 'Laplace type' differential .
equations in three space dimensions are
obtained interconnected by involved boundary
edndi s. Solutions are obtained using
the dynamic relsxation method which is an’
iterative finite difference technique. The
advantages of using the dynamic relaxation
method for this type of prdblem aré discussed.



1. Introduction

The Laplace equation is the governing equation in a large number
of problems, One example which presents several computational diﬁ;ic—
ulties is the analysis of interfewence effects of a emall wing
'os.cillating in subsonic compressible flow in a wind tunnel. This
problem can be reduced to the .solution-of Laplace type equations in
terms of the real and imaginary parts of a potential function with
conditions, in terms of both the real and imaginary parts of the function,

representing the behaviour at the boundaries of the tunnel.

Many successful solutions of this type of problem have been obtained
using finite difference methods., The main difficulty, however, arises
from the large number of simultaneous equations to be solved with the
additional complication of the interconnection of the real and imagiﬁary
gets of simulta.neogs eguations a:t the bo'undaries. Clearly an iterative
method is advantageouns; the méthod"choseﬁ in thi;vs instance was the '

dynamic relaxation method.

Dynamic relaxation was introduced by Otter (1965) and Day (1965)
and ha\s been applied mainly to struc.tural problems, though it is also
suitable for fluid flow problems. It is simply an itepative method
which has the advantage that it is based on a’ physicai analogy which

greatly assists the choice of the convergence parameters,

The aim of this paper is to show how the dynamic relaxation method
is used for the pa.r1;icular problem of flow in a three-dimensional wind
tunnel. Emphasis will be placed on the method of deriving the dynamic
relaxation equations, the choice of the finite difference approximation
to both the governing equations and the boundary conditions g.nd the
preparation of the computer programme., Further details of the aero-

dynamic significance can be found in Rushton and Tomlinson (1972).
2



2. Formulation of the Problem

2.1 Particular problem under consideration

The particular problem to be coqsidered in this paper rélates to a
rectangular wind ttymnelﬂorv bréadth, b, and height, h, containing a small
oscillating wing positioned at the centre of the tunnel, Figure 1. Due
to symmetry, the analysis will be restricted to one quarter of the cross
section of the tunnel. The flow in the tunnel is compressible and
oscillatory., The sidewalls of the tunnel are closed butthe roof and

floor contain perforations.

- 2.2 Governing equations
Using linearised theory which ignores Yiscous effects, the govern-
ing equation for oscillatory compressible flew is
2% Mg 2% 2 0% 2% %
——2' S+ 3 = STz +A——+—; M
dx dy©  dz U bx bﬂjt ot
where § (x,y,2,t) is the perturbation velocity potential and U is the

velocity of the undisturbed stream.

Since the flow is socillating with an angular frequency, w , it is

a.dvantageous to wrlte
imt
$ = _Real pa),'t ¢ (x,y,z)e (2)
which, when substituted in (1) leads to -

2_1_217_2.4 BT B Gl S
- = U ELIRC

where 52 = 1_](2,



It is convenient to introduce a modified potential function

R
¥ = B oexp (- ROR

8%

This modified potential can be separated into real and imagim‘sry parts,

¥ o= Y+ iy (5) .

Using (4) and {5), equation (3) becomes

o g v Sy

+ + +
o ?5}’2 hzz_ 5202

=0 ’ (68)

2 2
2 hzq:I . A%y A wzuzwI

+ + = 0 (6v)
dx>  ay® 8z p® ’

2.3 Small oscillating wing

The disturbance in the wind tunmel is éau_sed"by:f;a mll wi‘ng with
oscillatory 1lift; the undisturbed velocity potential for such a wing is
®

= 2
- USCr Pz fuMr iw

. .\ _dL' , B ’Q‘
¥o = TBn R (1+ ﬂ% ) exp (-ﬁzﬂ (x +HJ.‘)) 1'3 . (7).«

where 1'2

(x--x')2 + 82(y2+z2 . The real and imaginary parts of this

function are given in Table 1.

Since r occurs in the denominator of equation (7Y, the value of
the veldcity potential cannot be evaluated at the centre of the tunnel,

where T is zero. Instead it is evaluated at nodel peints surrounding

; ) - /ot
the tunnel centre by means of numerical integration.

PR O



2.4 Boundary Conditions
In wind tunnels perforations are often provided in the roof and
floor of the tunnel. According to Garner et al (1966) the condition

on these boundaries is

i - o  1df
(%+%)(5+K%‘g +-P-5%= o ,

where K and P are parameters describing a particular boundary.

When written in terms of the real and imaginary parts of the
modified potential function (equations (4) and (5)) this becomes, on a

plane z = constant,

Wy ok D% o M

"
—— —— K—-——_ + T — = O (83)
dx 520 AT BZU 0z F dz : :

2
L LA S DL

+—>5-+K + — +5—= = 0 . (Bb)«.
x B% X2 BZU bz P?)z

For the particular case of closed walls (K and 1/P equal-infinity)

this reduces to,

Mq oYL
—b_z- = 0 and ‘S‘;’ = 0 (9)

At distances far upstream there is no disturbance and therefore

¥, : oY
R
% - 0 and % o .

However, far downstream the velocity _po‘ﬁe'ntial is oscillator; and there

the tunnel is extended to x = X, where V’R = 0, and x = X; where VI = 0.



2.5 Summary of eguations

All the relevant equations for this problem are summarised in
Table 1, Note that the equations for the real and imaginary parts are

independent apart from those on the perforated boundary.

3., Numerical Solution

Numerical solutions to the problem formulated in Section 2. can
be obtained using the dynamic relaxation method. The primary reason for
choosing this method is that it is an iterative finite difference method
in which values of the real and imaginary parts are calculated simult-
aneously, and the interactive boundary conditions on the tp;;r}gl pqqf and

o

floor are easily included in the iterative procedure.

3.1 Dynamic relaxation eguations L -

In the dynamic relaxation method auxiliary variables U, V and M

are introduced such that

wR/hx = I + aU/dt

B /oy = DV + av/ot ' (10)

h;&R/aZ DW + oW/dt

where D is a damping factor. When these equations are substitute,d into

the following equation,

2 .
p2 20, &V OW w3’y e (1)
Tyttt ZR T ,

then the resultant equation,
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0% 2 % Wy W0 v 8%

+ + + = (D - —=
2 hyz bzz R2U DBZU2 At htz

(12)

has the same left hand side as the governing equation (6a). The right

B
hx

hand side consists of dynamic terms which, with suitable damping,
quickly become small. When the dynamic terms are negligibly“émall,

equation (12) becomes identical to equation (6a). 5

Efficient reduction of the oscillatory terms to a negligible small
value depends on the damping coefficient D—w2M2/D82U2 (the second tenﬁf;
is small compared with D for the present problems), The method of

choosing the optimum value of D is discussed later.
A similar set of equations is used for the calculation of the
imaginary part (6b).

A solutioﬁ to these equations Jan readily be obtained using an

explicit finite difference teéhnique.

3.2 Finite difference approximations

It is convenient to use an interlécing fiﬁite difference net,
Figure 2, with the functions ¥ and ¥, defined on the main net, and
the auxiliary variables U, V and W defined at inﬁeghediatekioihtizluin
a similar fashion, interlacing times are used wit}13ﬂR and 1%1 defined
at times n, n+1, n+2, .... and U, V and W defined at times n-%, n#,
nt1d, m2b, ... . .

The explicit finite difference form of the first of equations (10)

centred at time n is



(Pp(3+ 1K, 1) = Wp(3,K, 1) Yax = 0.5D(U(J,K, 1), 3+ U(J,K,L) 3)

+ (U(J,K,L)m%_-U(’J,’K,L)n_%)/At. (13)

This can be re-arranged to give a simple substitution formula for the
unknown function U(J,K,L)m_% which is included as the first equation

of Table 2,

Equation (11) centred at time n4% becomes
A 2(0,(3,K,1) - U(3-1,K,1))/Ax + (V(3,K,L) -V(3,K=1,L)) /Ay +
(W03, K, L) - W(I K, 1-1)) Az g + (}an’n+pg,’n+‘1)o2u2/2])52u2 -

(VR,n+1 -WR,n)/At' (14)

Re-arranging leads to an equation for the unknown I/R " which is the
b

second equation of Table 2.

Finite difference forms of certain of the boundary conditions are
also included in Table 2. Bounda.r{ conditions in terms of differentials
are enforced by means of fictitious nodes positioned outside the true

boundaries, Figure 3.

R S

The perforated boundary requires parficui;r comment, The relevant
equations (e) and (2) of Table 1, can be written with the terms b’y&/hz
and t¥;/bz on the left i’land sides. A1l of the other terms can be
written in terms of the’ krown values of the functions on the boundary
and at internal nodal points if an extrapolation formula is us;d for.

expressions of the form 5/dz, and a three point formula for >/3x, The

full finite dii‘fefence equations are written in Table 2.‘
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4. FNumerical Solution

In obtaining a numerical solution of the set of equations in Table

2, the following procedure is adopted with the nodal points numbered as

shown in Figure 4.

1

(1) Initially the values of U,V,W and ¥ are set to zero apart from

those values of ¥ at the nodes around the small wing which are deter-~

mined by the integrals (b) and (i) of Table 1.

(i) Values of U,V,W and¥p, U,V,W and Y are calculated using
equations (a) of Table 2 and the equivalent imaginary equations at all

internal and boundary nodes apart from those surrounding the wing.

(1ii) The boundary conditions are applied, equations (c)-to (e} of Vo
and 9& in finite difference approximations of the governing equations
(6a) and (6v). If every residual is less than a specified value then
the calculation is terminated. Otherwise return to step (ii) and

repeat the calculation.

The outliné computer programme, Table 3, follows the above order.
Values of the functions are stored in three-dimensional arrays, with
eight functions for each nodal point. Since the explicit formulation
leads to simple substitution formulae, the value for the previous time
step can be overwritten by the new value. The order in which the
equations are written in the computer trogramme represents the inter-

lacing time stegps.

5. Details of Numerical Solution for a Wind Tunnel

Details are given below of the solution for a wind tunnel of

square cross section (b = h) with a small wing occillating at a fre-

I



