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INTRODUCTION TO THE SERIES

Techniques of Chemistry is the successor to Technigue of Organic Chemistry
and its companion, Technique of Inorganic Chemistry. The newer series reflects
the fact that many modermn techniques are applicable over a wide area of chemical
science. All of these wcre originated by Arnold Weissberger and edited by him for
many years.

Following in Dr. Weissberger’s footsteps is no easy task, but every effort will
be made to uphold the high standards he set. The aim remains the same: the
comprehensive presentation of important techniques. At the same time, authors
will be encouraged to illustrate what can be done with a technique rather than
cataloging all known applications. It is hoped in this way to keep individual
volumes to a reasonable size. Readers can help with advice and comments.
Suggestions of topics for new volumes will be particularly welcome.

WILLIAM H. SAUNDERS, JR.

Department of Chemistry
University of Rochester
Rochester, New York
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PREFACE

Thirty years ago, lasers existed mainly as subjects of research in the laboratories of a
few physicists and engineers. Today they have become indispensible tools for
research in chemistry, physics, biology, and a variety of other fields. In chemistry,
lasers have had their greatest impact in spectroscopic applications, where the unique
properties of laser radiation have both reinvigorated old spectroscopies and stimulat-
ed the invention of many new ones. In many cases, lasers have opened areas of chem-
ical research that were previously unthinkable.

In this volume, 10 different laser spectroscopic techniques are described by one or
more of their leading practitioners. We have made no attempt to cover “laser tech-
niques in chemistry” comprchensively; this topic is far too broad for a single volume.
Rather, we have chosen to focus on those techniques that are sufficiently established
to be beyond the proof-of-principle stage, but have not yet become routine. Each
chapter describes how the particular spectroscopy is carried out experimentally and/or
interpretively, the types of systems to which it is applicable, and the type of infor-
mation that can be learned from its application. Also included are some speculations
about possible further developments and extensions of the techniques that one might
expect to see in the near future.

The volume is targeted toward graduate students, postdoctorals, and senior scien-
tists who are familiar with one or more types of optical spectroscopy and wish to
learn about others. It is written in a sufficiently pedagogical style so as to allow some-
one uninitiated in a particular approach to get a start at applying it in the laboratory.
We hope that our readers will come away with an increased understanding of the
power and variety of laser spectroscopic techniques, an eagerness to apply some of
these techniques to new problems, and, perhaps, ideas for even more novel and pow-
erful techniques that might be developed in the future.

ANNE B. MYERS
Tuomas R. Rizzo

Rochester, New York
Lausanne, Switzerland
May, 1995
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1.1. INTRODUCTION

Fourier-transform (FT) spectroscopies (1) have proved to be very powerful
methods in the study of chemical systems. The most prominent example. of course,
is FT—infrared (IR) spectroscopy (2), which has developed into an indispensible
tool for chemical analysis. Other techniques are also becoming more and more
important. These include FT versions of optical absorption and emission (3), Raman
spectroscopy (4), as well as methodological advances that have greatly facilitated
the study of pulse-generated transient species (e.g., photolysis products, radicals,
and ions) by FT techniques (5). These methods all have one thing in common
they are FT implementations of linear spectroscopies. An interferometer is used as
the spectrum analyzer of photons involved in single-photon transitions.

In recent years, the development of FT versions of nonlinear spectroscopies has
also been an area of active research (6—11). In these schemes an interferometer is
used as the spectrum analyzer of the resonant difference frequencies characterizing
two-photon resonant processes. The two-photon processes involved in these
schemes are of two types. There are those that rely on stimulated Raman transitions
[Fig. 1.1(a)] and those whose two-photon processes are the consequence of two
single-photon resonant transitions in sequence [Fig. 1.1(b) and (c)]. In either case,
the w, and w, excitation fields involved in the process pass through a Michelson
interferometer prior to interacting with the sample (Fig. 1.2). The output of the
interferometer then impinges on the sample, and an observable dependent on the
pertinent two-photon process is measured as a function of interferometer delay. The
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Figure 1.1. The two classes of two-photon processes involved in the FT nonlinear spectroscopies
discussed in this chapter. (a) Stimulated Raman scattering. A two-color pulse (w,, w.) drives a rovibra-
tional transition from |g) to |f), characterized by angular frequency (. (b) and (c) Sequential one-
photon resonant processes. The level diagram in (b) corresponds to ground-state hole burning. The w,
field depletes the population of |g) and the w, field samples that depletion. The two-photon resonance
frequency €, corresponds to the splitting between the excited states involved in the process. The level
diagram in (c) corresponds to stimulated emission spectroscopy. The w, field puts population into |e).
The w, field depletes that population by stimulated emission into ground-state |f). The two-photon
resonance is at frequency {2,.

“‘interferogram’’ that results from such an experiment is modulated by terms whose
frequencies are resonances of the sample. In the case of the stimulated Raman
schemes, the modulation frequencies are those ground-state rovibrational intervals
associated with the energy differences between the initial and final states involved
in the Raman transitions [(}, in Fig. 1.1(a)]. Fourier transformation of such an
interferogram yields a portion of the stimulated Raman spectrum of the sample. In
the second kind of process the modulation frequencies in the interferogram corre-
spond to the energy differences between those pairs of excited-state rovibronic
levels connected to a single ground-state level [{),. in Fig. 1.1(b)] or those pairs of
ground-state levels connected to a single excited-state level [}, in Fig. 1.1(c)].
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Figure 1.2. The interferometer arrangement employed for all of the FT nonlinear spectroscopies im-
plemented in this laboratory. The w, and w, fields propagate through the interferometer parallel to one
another (or colinear), such that they both experience the same delay. At the output the w, ficlds from
the two arms are combined colinearly, as are the w, fields.

Fourier transformation of this type of interferogram produces a spectrum of these
excited- or ground-state rovibronic frequencies.

Fourier transform nonlinear spectroscopies have several features that make them
useful as spectroscopic tools. First, the spectral resolution available with the meth-
ods is independent of the properties of the light source employed. Instead, reso-
lution depends on the range over which the interferometer is scanned in an experi-
ment. This feature permits one to use convenient, high-power, short-pulsed laser
sources to drive the relevant nonlinear processes without requiring any compromise
on spectral resolution. Second, the frequency scale in interferometric FT spectros-
copies can be made to be very accurate without a great deal of effort (1). This is
because that scale is determined by the interferometer scan range, a distance that
can be measured easily and accurately. Thus, when one is interested in absolute
transition frequencies and/or small shifts in such frequencies from one spccies to
another, a FT experiment is very well suited for obtaining the desired information.
Third, the information content of the FT nonlinear spectroscopies that rely on se-
quential one-photon resonant transitions is different from that of their frequency-
domain counterparts (11). When implemented in the frequency domain the spec-
troscopies measure single-photon vibronic spectra of labeled species. In contrast,
the FT versions of these spectroscopics give the two-photon resonances directly.
The upshot is that characteristics like rotational structure and Doppler broadening
are not the same in the FT and frcquency-domain versions. Depending on the
experiment at hand and the information desired, these differences can render the
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FT version the better alternative. Finally, in some circumstances there is information
that is more readily obtained directly from an interferogram than from a spectrum.
In particular, the spectroscopic manifestation of free rotation in a very large species
is a large number of resonances in the frequency domain, whereas in the Fourier-
conjugate domain (the interferogram) rotation is manifest as a small number of
time localized, equally spaced transients (12) whose positions depend directly on
the species’ rotational constants. In these cases the measurement of such transients
and their interpretation can be considerably easier than obtaining frequency-domain
results of suitable quality and interpreting such results.

Our laboratory has developed a number of different methods of FT nonlinear
spectroscopies. These are FT methods based on coherent Raman scattering (CRS)
(6,10), ionization-detected stimulated Raman spectroscopy (IDSRS) (8,10), stimu-
lated emission spectroscopy (SES), and hole-burning spectroscopy (HBS) (7,11).
We have also demonstrated a variant of such schemes (down-shifting), which shifts
high-frequency modulations in interferograms down to much lower frequency and
thus facilitates their measurement (9). This chapter intends to provide a review of
these techniques and the results obtained from them. The following section starts
with a brief historical account of work relevant to this area. Then, Section 1.3
presents a pedagogical treatment to show how the two-photon resonances produce
modulations in the interferograms whose frequencies are just the resonant differ-
ence frequencies. Section 1.4 outlines each of the methods, their information con-
tent, and their implementation in our laboratory. Following this, Section 1.5 pres-
ents representative results from these methods and discusses some of their
implications. Finally, Section 1.6 closes with a brief discussion of the future in
regard to the application of FT nonlinear spectroscopies.

1.2. HISTORICAL PERSPECTIVE

The first experiments involving the use of long pulses of incoherent light to
achieve subpicosecond time resolution in dynamical studies were reported in the
mid-1980s by several groups (13-17). Each of these experiments was an interfero-
metric implementation of a resonant four-wave mixing scheme. The experimental
arrangements are represented schematically by the diagram in Fig. 1.3. The output
of a broadband laser source was split into two by a beamsplitter. One of the two
parts was optically delayed with respect to the other. The two parallel beams were
then focused at an angle into the sample. The intensity of a coherent beam gen-
erated by resonant degenerate, or nearly degenerate four-wave mixing in the sample
was then detected as a function of the optical delay. The detected beam was the
one propagating with wavevector 2k, — k,, where Kk, represents the wavevector of
the undelayed beam and k; that of the delayed beam.

The results of these experiments displayed two notable features. First, transients
evolving on timescales much faster than the pulse width of the light source used
were observed (13,14,16). Second, when more than a single transition was spanned
by the bandwidth of the excitation source, modulations having a frequency match-
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Figure 1.3. The general experimental arrangement employed in the interferometric spectroscopies of
Refs. 13—17. The broadband ficld (w) used to drive the resonant, degenerate (or near-degenerate) four-
wave mixing process is split into two parts by a beam splitter. One part is optically delayed with respect
to the other. The two, noncolinear beams are focused into the sample, where they intersect with different
wavevectors (K, and k.) and generate the four-wave mixing signal.

ing the frequency difference between the transitions appeared in the observable,
despite the fact that the modulation period was much shorter than the excitation
source pulse width (15,17). These results were explained (14,15) by noting that the
pulses produced by an incoherent, or partially incoherent light source are actually
comprised of a randomly phased series of very short, subpulses. Splitting the output
of such a light source in two produces two pulses having the same pulse
substructure—that is, two correlated series of ultrafast noise spikes. When a four-
wave mixing process is driven by these two pulses in sequence, the pairs of cor-
related noise spikes between the pulses build up an accumulated photon echo,
which is just the four-wave mixing signal in the experiment. The accumulated echo
amplitude depends on the evolution of the sample during the time between corre-
lated spikes. Thus, the four-wave mixing signal versus pulse delay can reflect sam-
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ple dynamics on a timescale that is limited only by the duration of the noise spikes,
not the overall pulse width of the light source.

In 1986 DeBeer et al. (18) reported an important extension to the experiments
described above. In a near-degenerate four-wave mixing experiment on the D lines
in Na, they used two, narrow-band dye-laser sources (5-GHz bandwidth, 7-ns
pulses) to excite the two D-line transitions, respectively. The two laser beams were
combined colinearly. Then the resulting two-color pulse was split in two. Next, the
experiment proceeded in the same way as above: The undelayed (k;) and delayed
(k;) pulses were focused at an angle into the sample and the beam generated at
2k, — k; was detected as a function of delay. The interesting result was the ob-
servation of well-modulated beats having a period of 1.9-ps, beats corresponding
to the energy splitting between the two upper states associated with the D-line
transitions. Notably, these beats were not only much faster than the laser pulses,
they were also much faster than the evolution of the noise substructure within those
pulses. These experiments showed that very fast modulations reflecting energy dif-
ferences between the states of a species (Bohr-frequency beats) could be observed
in a nonlinear interferometric experiment employing two narrow-band light
sources. Neither short nor very broadband pulses were required. This *‘ultrafast
modulation spectroscopy’” (UMS) (18) suggested a new, powerful approach for
characterizing otherwise difficult-to-characterize energy splittings.

The work of DeBeer et al. (18) stimulated us to try to extend the interferometric
UMS approach to four-wave mixing processes other than fully resonant ones. We
subsequently demonstrated an interferometric version of coherent Raman scattering.
This Fourier transform coherent Raman scattering (FTCRS) (6) has one procedural
difference from UMS, aside from the fact that different four-wave mixing processes
are involved in each. In FTCRS, just as in UMS, the outputs of two lasers are both
split in two, and one split pair is delayed with respect to the other split pair.
However, in FTCRS the two pulses of a given color from the two arms of the
interferometer are recombined colinearly (see Fig. 1.2), unlike in UMS.

The analysis of FTCRS showed us that a fruitful way of viewing interferometric
versions of nonlinear spectroscopies was as FT techniques analogous to linear
methods (1) like FT-IR spectroscopy. This analysis also suggested that any non-
linear spectroscopy involving a resonance condition of the form w, — w, = Q,
should be susceptible to implementation interferometrically as a FT spectroscopy.
The general recipe for such implementation is to direct the w, and w, light beams
parallel (or colinearly) through a Michelson interferometer, colinearly recombine
the two w, beams from the two interferometer arms and the two w, beams from
the two arms, direct the output of the interferometer to the sample, along with any
other probe beams required, and measure the pertinent signal as a function of
interferometer delay. In doing such an experiment one will obtain a signal versus
delay trace (interferogram) that is modulated by the resonant difference frequencies
;. Fourier transformation produces the desired spectrum. Realizing this, we then
conceived of and demonstrated the other FT nonlinear spectroscopies that are the
subject of this chapter.

Finally, in 1988 a different class of interferometric four-wave mixing methods



