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Professor Boris Yakovlevich Levin (22 December 1906—24 August 1993) did not live
to see the English edition of this work appear. His works in the theory of entire functions
are considered to be classics, and are reflected in much of this survey; we are unable
to convey here the impact of his works in other areas of mathematics.
We were greatly influenced by Professor B. Ya. Levin throughout our scientific careers
and in particular when working on this text. We dedicate it to the memory of our
teacher and friend, B. Ya. Levin, whose passing leaves a great void in the mathemat-
ical community.
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Introduction

The works by Weierstrass, Mittag-Leffler and Picard dated back to the
seventies of the last century marked the beginning of systematic studies of
the theory of entire and meromorphic! functions. The theorems by Weierstrass
and Mittag-Leffler gave a general description of the structure of entire and
meromorphic functions. The representation of entire functions as an infinite
product by Weierstrass served as the basis for studying properties of entire
and meromorphic functions. The Picard theorem initiated the theory of value
distribution of meromorphic functions. In 1899 Jensen proved a formula which
relates the number of zeros of an entire function in a disk with the magnitude
of its modulus on the circle. The Jensen formula was of a great importance
for the development of the theory of entire and meromorphic functions.

The theory of entire functions was shaped as a separate scientific discipline
by Laguerre, Hadamard and Borel in 1882-1900. Borel’s book “Legons sur les
fonctions entiéres” published in 1900 was the first monograph devoted to this
theory. The works by R. Nevanlinna during 1920’s resulted in the intensive
development of the theory of value distribution of meromorphic functions, and
were largely responsible for determining its modern character. The fundamen-
tals of this theory were presented in R. Nevanlinna’s book “Le théoreme de
Picard-Borel et la théorie des fonctions méromorphes” (1929).

The first results in the general theory of entire functions were connected
with studies of differential equations (Poincaré) and with the theory of num-
bers (Hadamard). In the course of further development of the theory of mero-
morphic and entire functions more and more links were revealed with the
above-mentioned and other mathematical disciplines, such as functional anal-
ysis, mathematical physics, probability theory, etc. In the present work the
authors have tried not only to give a picture of the modern state of the theory
of meromorphic and entire functions, but also, to the best of their ability, to
reflect the links with related disciplines.

Below follows a list of the notations which will be used hereafter without
any explanations: D, = {2: |2| <7}; Cr ={2: |2| =7}; D1 = D; C; =T,
W(b,e) = {z: |argz — 6| < €}; S(0) = W(8,0); n(r,a, E, f) is a number of
those a-points (with account taken of multiplicities) of a function f which lie
in the set E N D,. When writing lim ¢(r), O(p(r)), o(¢(r)) we always mean
that r — oco.

The reference of the form Ahlfors (1937) shows the name of the author and
the publication date of the item included in the reference list. In a case that
there are several mathematicians of the same name we add the initials of their
first names, e.g., J.Whittaker (1935) and E.Whittaker (1915).

! By a meromorphic function we mean a function meromorphic in C, if not otherwise
stated.
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In addition to the main authors this article was written with the partici-
pation of V.S. Azarin, A.E. Eremenko, and V.A. Tkachenko. We are further
indebted to A.A. Kondratyuk and M.N. Sheremeta for their valuable help in
writing Section 7, Chapter 2 and Section 4, Chapter 1, respectively. The main
authors are responsible for the overall concept of this article as well as its final
editing.

A.A. Gol'dberg, B.Ya. Levin, 1.V. Ostrovskii
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Chapter 1
General Theorems on the Asymptotic Behavior
of Entire and Meromorphic Functions

§1. Characteristics of Asymptotic Behavior

Entire functions are a direct generalization of polynomials, but their asymp-
totic behavior has an incomparably greater diversity. The most important
parameter characterizing properties of a polynomial is its degree. A transcen-
dental entire function that can be expanded into an infinite power series can
be viewed as a “polynomial of infinite degree”, and the fact that the degree is
infinite brings no additional information to the statement that an entire func-
tion is not a polynomial. That is why, to characterize the asymptotic behavior
of an entire function, one must use other quantities. For an entire function f

we set
M(r, f) = max{|f(2)| : |2} =7} .

Since, according to the maximum modulus principle, M(r, f) = max{|f(2)] :
|z| < r}, then M(r, f) is a non-decreasing function of r € Ry, and if f # const,
then M(r, f) strictly increases, tending to +o0o for r — co. For a polynomial
f of a degree n the asymptotic relation holds log M(r, f) ~ nlogr. Thus
n = limlog M(r, f)/logr, i.e., the degree of a polynomial is closely related
to the asymptotics of M(r, f). The ratio log M(r, f)/logr tends to oo for
all entire transcendental functions. That is why the growth of log M(r, f) is
characterized by comparing it not with logr, but with faster growing func-
tions. The most fruitful is the comparison with power functions; in this con-
nection we shall introduce some quantities which characterize the growth of
non-decreasing functions a : Ry — R;. The quantities

= =1l ,
p = plo] = limsup logr logr

will be called the order and lower order of a function «, respectively. If p < oo,
then the quantity
o = ofa] = limsupr~Pa(r)

is called the type value of the function a. If ¢ = 00, 0 < 0 < 00, 0r 0 = 0,
then a is said to be of a mazimal, normal or minimal type, respectively. If
0 < 0 < oo, then [;° a(t)t™?~!dt = co. For o = 0 this integral can either
converge or diverge. In this case the function « is said to belong either to
the convergence or to the divergence class. Two functions a; and az have
the same growth category if they have equal orders, the same type (but not
necessarily equal type values!) and if they simultaneously belong either to the
convergence or to the divergence class. A function a; has a higher growth
category than aj in three cases: (1) plai] > plaz], (2) plai] = plaz] < oo,
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provided that the type of c; is higher than that of a2 (the convention is that
the maximal type is higher than the normal, and the normal, in its turn, is
higher than the minimal), (3) plai] = plaz], ola1] = olaz] = 0, provided that
a; belongs to the divergence class while a; belongs to the convergence class.
For an entire function f, the order, type, type value, convergence/divergence
class and growth category are, by definition, the same as those of log M(r, f).
Thus p[f] = p[log M(r, f)], and so forth. We will use the following notation:
[p,0] is the class of all entire functions f such that p[f] < p and if p[f] = p,
then o[f] < 0; [p, o) is the subclass of [p, o] with the additional condition that
if p[f] = p, then o[f] < 0. We shall also denote by [p, co] the class of all entire
functions f with p[f] < p, and by [p, 00) the class of all entire functions with
a growth category not higher than of order p and normal type. Functions of
the class (1, 00) will be called entire functions of ezponential type (EFET).

Examples. A polynomial of a positive degree is of order zero and maximal
type. The functions e, sinz are of order 1 and normal type, i.e., they are
EFETs. The function cos /z is of order 1/2 and normal type. The function
1/I'(z) is of order 1 and maximal type. The function exp 2™ has a normal type
with respect to the order n. The function exp exp z has an infinite order. The
function E,(oz; ), with

Ep(zip) =Y 2"/T(u+n/p), >0, Ru>0,

n=0

has the order p and the type value 0. E,(z, u) is called a function of the Mittag-
Leffler type, so named in honour of the mathematician who first investigated
it ( for 4 = 1). A detailed study of properties of the function E,(z,p) was
undertaken by M.Dzhrbashyan (1966).

In order to determine the growth category of an entire function, the function

2%
mirf) = 5= [ 108" If(re)|d8

is often used. The growth categories of log M(r, f) and m(r, f) coincide, al-
though their type values can differ. This follows from the inequality

m(r, f) < log* M(r, f) < {(R+7)/(R—7)}m(R,f), 0Sr<R<oo.

It is well-known that the implication (p[log M(r, f)] = Allog M(r, f)]) «
(p[m(r, )] = Alm(r, £))) is true. In 1963, Gol’dberg showed that the existence
of the limit of r—?log M(r, f), as r — 0o, does not imply the existence of
the limit of r—?m(r, f) and vice versa (see Gol’dberg and Ostrovskii (1970),
pp. 100-106). Let us denote by n(r,0, f) the counting function of zeros of
an entire function f, i.e., the number of zeros in the disk D,., with account
taken of multiplicities. Azarin (1972) showed that the existence, as r — 0o, of
the limits of any two out of the three functions: r=*log M(r, f), r~Pm(r, f),
r=Pn(r,0, f) does not imply the existence of the other limits. This generalizes
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both the above-mentioned result of Gol’dberg and that of Shah proved in 1939
who compared log M(r, f) with n(r,0, f).

To describe the asymptotic behavior along the rays {z : argz = 6} of an
entire function f of order p > 0 and normal type the function

h(8, f) = limsupr—"log|f(re®)], 0<6<2nm,

can be also used. This function was introduced by Phragmén and Lindel6f in
1908 and is called the indicator. Its principal property is the p-trigonometric
converity, which means that for any 6; < 8; < 03 < 6; + 7/p the inequality

sinpf; sinpfy sin pfhs
cospl) cospf; cospfs | >0
h(BI’ f) b(027 f) h(oﬂa .f)

holds. Various consequences of the p-trigonometric convexity are given in
Levin (1980), Chap. 1, Sect. 16. V. Bernstein proved in 1936 that every 2n-
periodic p-trigonometrically convex function (p > 0) is the indicator of some
entire function of order p and normal type (for p = 1 this result was obtained
in 1929 by Pélya).

For p = 1 the trigonometric convexity of a 2m-periodic function h has a
simple geometric interpretation. This means that h is the support function of
some bounded convex set on the plane. Thus, the bounded convex set with the
support function h(6, f) corresponds to an entire function f of exponential
type. The set is called the indicator diagram of the function f.

While investigating entire functions of finite order, there arise certain diffi-
culties in the case of the maximal or minimal types. So it is convenient to use
for comparison a broader class (than power functions), which, while retaining
the principal properties of power functions, makes it possible to obtain a nor-
mal type. At the turn of the century several such classes were suggested. One
of the most commonly used proved to be the one described in the book by
Valiron (1923). Similar classes had been introduced by Lindeldf, Valiron and
others. Following Valiron we shall call a function p(r) the prozimate order,
if it is continuously differentiable on R4 and: (1) p(r) — p, 0 < p < o0, (2)
p'(r)rlogr — 0, (3) for p = 0 the property r#(") 1 oo is additionally required.
For a function a : Ry — R, of finite order a proximate order p(r) is called
the prozimate order of the function a, if 0 < 0*[a] < co where

o*[a] = limsupr~?Ma(r) .

The quantity o*[a] is called the type value of the function with respect to
the prozimate order p(r). It is clear that if p(r) is a proximate order of the
function a, then p(r) — p = pla). The most important fact validating the
use of proximate orders is that for every function o : Ry — Ry of finite
order there exists an appropriate proximate order. This theorem was proved
by Valiron (in a somewhat weaker form as early as in Valiron (1914), p. 213).
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The classes [p(r), 0], [p(r),o) and [p(r),c0) are introduced in the same way
as for the usual order.

In 1930, Karamata introduced the notion of slowly and regularly varying
functions which found their application, see Seneta (1976), in probability
theory and the theory of integral transforms. A function L : Ry — R, is said
to be slowly varying if for every c, c € (0,00), the equivalence L(cr) ~ L(r) is
true. By the Karamata theorem L(cr)/L(r) tends to 1 uniformly with respect
to ¢ € [a,b] C (0,00). A function V : Ry — Ry is said to be regularly varying
with exponent p if V(r) = r?L(r) where L is slowly varying. It is easy to
verify that for a proximate order p(r), p(r) — p, the function V(r) = re")
is regularly varying with the exponent p. Conversely, one can show that if V
is regularly varying with the exponent p and V(r) — oo, then there exists a
proximate order p(r) — p such that r?") ~ V(r).

The function

h(8, ) = limsupr~*") log | f(re*)|

is called the indicator of a function f of proximate order p(r). The indicator
is a p-trigonometrically convex function with p = lim p(r) > 0 (h(0, f) being
a constant for p = 0). Whatever the proximate order p(r) — p > 0, any
p-trigonometrically convex 2m-periodic function can be the indicator of an
entire function of proximate order p(r). This result,under some additional
assumptions, was obtained by Levin in 1956 (see Levin (1980)); in the general
case it was obtained by Logvinenko in 1972.

Attempts were undertaken to use as comparison functions other than
V(r) = r?(r) in order to examine the asymptotic behavior of entire func-
tions; in particular, of functions of infinite order. The classic results are de-
scribed in the book by Blumenthal (1910). From comparatively recent results
we shall mention those by Sheremeta (1967,1968). The latter suggested a
flexible growth scale containing (partly or fully) scales introduced earlier (by
Schonhage, Fridman and others). In constructing his scale Sheremeta did not
take, as the starting point, any elementary functions (e.g., logarithm itera-
tions) and their superpositions, but singled out classes of functions with min-
imal restrictions, sufficient to obtain the needed relationships. Sheremeta’s
generalized orders were used not only by Sheremeta himself, but by many
other researchers (Balashov , Yakovleva, Bajpaj, Juneja and others). More
specific, though still rather general , scales were introduced by Klingen (1968)
and by Bratishchev and Korobejnik (1976). As an example, we shall give one
of the results (Sheremeta (1967)) that generalizes the well-known Hadamard
formulas for calculating the order and the type value of an entire function
f using its Taylor coefficients. Let o, B, v be differentiable functions on R4
which tend to +o0o strictly monotonically, as r — 00, and a(r + o(r)) ~ a(r),
B(r + o(r)) ~ B(r), ¥(r + o(r)) ~ v(r). Let 0 < p < 00, 0 < ¢ < 00,
F(r,c,p) = 7~ {8~} (ca(r)))*/?}. Assume that (d/dz)log F(e;c,p) — 1/,
as z — 400, for all ¢, 0 < ¢ < oo (if a and 7y are slowly varying functions,
~ only (d/dz)log F(e®;c,p) = O(1) may be required). Then
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. a(logM(r,f)) a(n/p)
ISP TBOO)) - P SR lan TR

When p = 1, a(r) = B(r) = logr, v(r) = r, we obtain the Hadamard formula
for calculating the order, and when p = p, a(r) = B(r) = v(r) = r, the
formula for calculating the type value.

It should be noted that there exist formulas which relate the decrease of
the coefficients a, directly with M(r, f). We will quote the following result
by Sheremeta (1973). Let f be an entire function, (a.) be the sequence of its
Taylor coefficients, and #* be the function inverse to log M(e®, f). If

lim sup(loglog r)~2 log log M(r, f) = 00,

then
limsup nd*(n)(—logla.|)~t =1.
n—o0

The restrictions on the growth of M(r, f) in this theorem cannot be weakened.
Thus, a simple universal formula is given which is applicable to all entire
functions except a subclass of functions of zero order.

A proximate order p(r) of a function a may be chosen such that not only
o*[a] = 1, but also r”") > a(r) for r > ro, and for some sequence r, T oo
the relation 5™ = a(r,) would hold. Since L(r) = r#(")~? is slowly varying,
one can choose sequences an | 0o and &, | 0 such that L(r)/L(r,) <1+ 6,
for rn/an < 1 < Than. Then a(r) < rP) = rBL(r,)(r/rn)?(L(r)/L(rn)) <
a(rs)(r/rn)?(1+65) on this interval. It is often sufficient to use this inequality
satisfied only on some sequence of intervals. Here it is unimportant that the
exponent of the power majorant equals p = pfa], the global characteristic of
the growth of the function a. This leads to the following definition: a sequence
(rn), T — 00, is said to be a sequence of Pdlya peaks of order p € R, for a
function « if there exist a, T 00, 65, | 0 such that

a(r) < arn)(r/rn)?(1 + 6n), Tn/an ST <Thap. 1)

The exact upper and lower boundaries of Pélya peaks orders for a given
function o will be called the Pdlya order and the Pélya lower order of a, and
be denoted by p. and A, respectively. Edrei (1965) proved that the set of
Pélya peaks orders covers the interval [, p] where A and p are the lower order
and order of the function a, respectively. Thus, A < A < p < p,. It was he
who introduced the term “Pélya peaks”, since this notion (though implicitly
and in a weaker form) was used by Pélya in 1923 in his study of the structure
of infinite sequences. The set of Pélya peaks orders is the interval [\, p.] for
P« < 0o or the interval [A.,o0) for p. = oo (Drasin and Shea (1972)). The
Pélya order and the lower order can be determined using the formulas (Drasin
and Shea (1972)):

p. = sup{p: lzilgfgga(Ax)/ (APa(z)) = oo},



