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Preface

This book has been written in response to the need for a textbook on matrix

" structural analysis that places proper emphasis on the methods in use in
current practice and that lays the groundwork for allied, more advanced,
subject matter such as the finite element method. To retain a wieldy volume
oriented toward a one-semester senior or introductory graduate level course,
account has been taken of the background that one might reasonably expect
in a modern engineering education. Thus, it is assumed that the student is
well-acquainted with matrix algebra and has already received instruction in
the more traditional methods of structural analysis.

Following the appearance, in the 1950s, of electronic digital computers
in design offices, the necessity of courses specifically directed toward com-
puterized structural analysis became apparent. At that time the notions of
matrix algebra were unfamiliar to all but a few experts. Structural analysxs
procedures consisted of a wide variety of uncoordinated “bag of tricks,”
and here, as well, only a relatively few experts were equipped to perform

“accurate analyses of complicated structnres. Even fewer were acquainted
with computer programming procedures. With these considerations in
mind, a Iarge number of textbooks appeared, some of them excellent in the
context of the era. In addition to the subject matter intrinsic to the theory,
these books covered matrix algebra and programming in considerable

" detail. Many of them included computer programs.

It is well to recognize that this earlier generation of texts also-dealt with
subject matter that was not fully crystallized. For example, much attention’
was showered upon the flexibility (or force) method, which today is hardly
known in practice. In some cases the stiffness method was cast in the same
awkward form as, the flexibility method, rather than in the currently widely.

~ practiced, “direct stiffness” format. Many operations, essential to practice,
were not perceived. Cases in point include constraint conditions and sub-
structuring. Often a grasp of the even more important relationship to the
more general capabilities of finite ¢lement analysis was lacking. This book
places the: subject matter of matrix structural analysis in closer alignment
with what we regard as current and future practice.' A discussion of the
motivation and salient features of the respective chapters best explains the
way in which this is done.

Three purposes are served by Chapter 1, the Introduction. First, 2
concise sketch is drawn of the history of development of the subject. One
intent of this history is to emphasize that computerized structural analysis
miethods are merely one part of a continuing progress that extends back more
than 150 years. Second, the role that computerized structural analysis has
played in the design of standing structures is outlined. These examples range
from designs of modest complexity to monumental structures. Finally, the
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computer capabilities themselves are tied to the programs written for struc-

tural analysis. The awesome rate of development of computer hardware
- and software concepts limits this discussion to some rather general descrip-

tions of what students might expect when they enter the design office.

Chapters 2 to 5 represent closely allied subject matter. We note above
that the direct stiffness method predominates in practice, and it is to this
approach that this group of chapters is addressed. Chapter 2 ostensibly
serves to define terminology, coordinate systems, and the most fundamental
notions of structural behavior. It also presents, however, two developments
of great generality. The first is the basic character of elemental relation-
ships in the form of stiffness and flexibility and their transformability from
one to another and even to alternative formats. The second is the funda-
mental idea of direct stiffness analysis, described here by means of the
simplest structural element.

A more formal treatment is given to direct stiffness analysis in Chapter 3
and, consequently, it is possible to examine more closely the implications for
large-scale, practical computation. The latter include considerations such
as the characteristics of the algebraic equations that are to be formed and
solved. In Chapters 4 and 5 the remaining tools needed for the linear stiffness
analysis of complete frames are established. The stiffness matrix of a rather
general space-frame element is. formulated and then applied, in illustrative
examples, to a wide variety of specific situations.

One important aspect of Chapters 2 to 5 deserves comment. This initial
development of the subject is based on consideration of the basic conditions
of structural analysis in the form of equilibrium, compatibility, and material
mechanical properties. Only slight attention is paid to work and energy
concepts. This stems from our view that students entering the study of matrix
structural analysis do not have the essential grounding in the latter concepts,
and their treatment is best delayed until the student is attuned to the overall
approach in computerized structural analysis.

Chapters 6 and 7, taken together, represent all of the study glven in
this text to the flexibility, or force method of matrix structural analysis. It
has already been pointed out that the flexibility method does not enjoy signifi-
cant utilization in current practice.’ A major reason for this is the inconve-
nience of redundant force systems, which must be identified ‘and calculated
prior to the actual determination of the unknown forces in statically mdeter-
minate structures. For reasons given below, it is believed that 'he flexibility
‘method does merit the attention given to it in these two chapters,

‘Formally, Chapter 6 is concerned with the calculation of internal forces
in framework structures by use of equilibrium conditions alone. These
procedures are’ of use in the analysis of statically determinate structures and
in the detection of kinematic instability, for example, the case of insufficient
support. Most importantly, however, these procedures represent an auto-
matic (programmable) approach to the calculation of redundant force
systems. With this in hand it is possible, in Chapter 7, to deal concisely with
the flexibility method.. Numerous example-solutions are presented to illus-
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trate this approach. It is entirely possible that the availability of this more
convenient and organized approach will enable future practical utilization
of the flexibility method.

In Chapters 8 and 9 we consider the formulation of matrix structural
analysis on the basis of virtual work concepts. Although the appearance of
this subject is. somewhat late in the text, it is believed that it enables the
student to receive a more general and substantive treatment than is usually
the case. A treatment of this type is necessary to give maximum scope to
various aspects of practical design analysis of frameworks, such as tapered
members and distributed loads, and it is the essentlal basis of later study of
the finite element approach. i

The theoretical groundwork of the v1rtual work principle is laid in
Chapter 8. Both virtual dlsplacement and virtual force concepts are covered,
but far greater attention is given to the f6fmer on account.of their role i in
stiffness formulations. Chapter 9 examines the implementation of the virtual
work principle in matrix structural analysis.

The development of the stiffness and flexibility procedures given in
Chapters 2 to 7, is necessarily idealistic on account of the introductory intent
of that portion of the text. In it, several detailed procedures, essential to
the efficient solution of practical design analysis problems, are disregarded.
Chapter 10 is devoted to the exposition of certain of these practices, including
condensation of analysis equations prior to solution by elimination of -
specified unknowns, substructuring, the imposition of constraints, proce-
dures for the economical reanalysis of structures when in an iterative design
sequence, and the exploitation of symmetry and antisymmetry. Careful
attention is given to the detailed circumstances of various types of coordinate
systems that are alternative to global coordinates, such as the local coordinate
systems that are convenient for sloping supports. Also, the transfer matrix
approach to matrix structural analysis is formulated. -

Chapter 11 comprises a detailed study of some of the more popular
methods of solution of linear algebraic equations. Equation solving is more
in the realm of applied mathematics, numerical analysis, or computer science
than in structural engineering. Nevertheless, since primary responsibility
for the entire analysis generally belongs to structural engineers, they should,
have more than a superficial knowledge of the important aspects of equation
solving. This chapter is an introduction to the subject that highlights the
methods found to be most useful in structural analysis. The pitfalls one may
encounter are mentioned and illustrated. Guides to more comprehensive
literature are included, and the reader is prepared for the study of these more -
specialized sources. _

We noted that one broad objective of the present book is to present the
total subject matter in such a way as to lay a proper groundwork for the
subsequent study of the finite element method. The latter is distinguished
from framework analysis, in this context, by the treatment of two- and three-
dimensional continua in contrast with frameworks. Chapter 12 introduces
the rudimentary considerations of finite element analysis, with attention
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fimited to -planar conditions. It is demonstrated that a relatively small
amount of new subject matter—principally in the formulation of relation-
ships between strain and displacement—-is needed to extend the work of the
prior chapters to the rather general capabilities of finite element analysis.

The contents outlined above, in our experience, represent subject matter
on the scale of a 3-credit-hour, one-semester course with some selectivity
of coverage available to the ‘instructor. Much additional, relevant subject
matter could be identified, for example, dynamic analysis, elastic instability
analysis, and inelastic behavior, but it is not likely that it could be adequately
covered in a semester time span.

A final word is in order with respect to the computer programs that lie
at the heart of this topic. We decided to exclude computer programs. The
rapid changes in programming philosophy, alluded to previously, bring
about obsolescence of specific codes; an ample supply of such codes is
available in other published works. Also, many instructors prefer to employ
the widely used structural analysis programs (e.g., STRUDL) in support of
the computational side of their courses. An attractive alternative, used by us
in courses taught with support of this text, is to require that students develop
their own matrix structural analysis program as a term-long project.

William McGuire
Richard H. Gallagher
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XVl

Symbols

In matrix structural analysis many physical quantities and mathematical
operations must be represented symbolically. Preparation of the equations
of analysis in a form suitable for computer solution requires that all symbols
used be defined in a rigid fashion amenable to numerical interpretation. On
the other hand, the development of these equations, with stress upon their
physical significance, is often best accomplished through the use of simple,
less formal symbols, symbols that vary with the principle under discussion
and have a clear physical connotation in the case at hand. In the inferest of
generality and uniformity we shall use some basic symbols to denote certain
quantities throughout the text. But the precise interpretation of any of these
symbols must be obtained from the lpcal context in which it is used, and in
which it will be explained.

In general, we use the letter P to designate applied direct forces and P,
to designate applied moments. R and R,, will be used for direct and moment
reactions, respectively. At joints we denote internal direct forces by F and
internal moments by M. All of these symbols may carry clarifying subscripts
and superscripts to indicate direction, point of application, or member to
which the symbol applies. The symbols may appear in either single com-
ponent or vector form. The symbols u, v, and w will designate translational
displacéments in the x, y, and z directions and 0,,0,, and 6, rotational dis-
placements about these axes. Generally, the letter k will refer to a stiffness
quantity and d to a flexibility quantity.

Matrices are denoted by a boldface letter within the symbols [] (for a
rectangular matrix), { } (for a column ";ector), | J(for arow vector),and I _i
for a diagonal matrix.

- As a further guxde the followmg is a list of the principal symbols used
in the text. As indicated above, most of these may contain clarifying or
modifying subscripts, superscripts, or supplementary marks (overbars 7, hat
symbols ~, etc.) that will be defined in context. The same applies to the
individual components of matrices and vectors listed below.

A Area
[A] Kinemgtics matrix
[B] Statics matrix
[C.].[C,] Matrices derived from the statics matrix
[d] . ,Element flexibility matrix
[D] Global flexibility. matrix
E [E] Elastic modulus, matrix of elastic constants
{F} Vector of element nodal forces
G Shear modulus
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.
(]
J

(k]
(K]
L

-
‘.ﬂ.
INJ

[0].{0}

{

1
]

Moment of inertia

Identity matrix

St. Venant torsion constant

Element stiffness matrix

Global stiffness matrix

Length

Element nodal moment

Internal bending or twisting moment
Vector of element shape functions
Number of degrees of freedom, number of nodes
Null matrix and vector

Vector of global nodal forces

p Number of elements
q Distributed load intensity
{R} . Vector of reaction forces
. T Temperature change above stress-free state
t Plate thickness
U, u* Strain energy and complementary strain energy
U, v, W Displacement components '
Vol Volume '
w Work
X, ¥, 2 Cartesian coordinates
Greek Symbols
« Coeflicient of thermal expansion
o, B,0 Direction angles
B Angle of twist per unit of length
[F1.[¥y]  Transformation matrix
¥ Shear strain
{A} Vector of nodal point displacements
A Displacement
b Relative axial displacement
£ Normal strain
0 Angular displacement
K Condition number, curvature
A Eigenvalue
YRYTIRY - Direction cosines
v Poisson’s ratio
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3.1416. ..

Radius of curvature

Normal stress

Shear stress

Vector of element relative displacements
Static equilibrium matrix ‘
Angle of measure

_ Mixed format force-displacement matrix

In addition to the above literal and matrix symbolism, we shall use the
following graphic symbols wherever it is desired to indicate or to stress
.some particular characteristic of a force or structure.

—————

A

_+__>
Y

PP Direct force and moment components

Slptppd  Direct force and moment resultants
.)...)—.,L-) Reactive force and moment components

f’\ Alternative representations of moments

5 \ - Pinned joint
§ \ e Rigid joint
— " Roller subport
' )

W%A
3 £ * Pinned support
¥ 8]

%/

T

o N

Elastic support

%

Fixed support

€$o
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Bl B INTRODUCTION

~One of the responsibilities of the structural design engineer is to devise

arrangements and proportions of members that can withstand, economically
and efficiently, the conditions antlclpated during the lifetime of a structure.
A central aspect of this function is the calculation of the distribution of
forces within the structure and the displaced state of the system. Our objective
is to describe modern methods for performing these calculations in the
particular case of framed structures—trusses, planar frames, and space
frames—under conditions of linear elastic behavior.

The number of structures that are actually frameworks represents only

a part of those whose idealization in the form of a framework is acceptable
. for the purposes of analysis. Buildings of various types, portions of aerospace
and ship structures, and radio telescopes can often be idealized as frame-
works. The philosophy of design is predominantly one requiring elastic
behavior under working loads. Although ultimate load concepts continue
to gain acceptance, they, too, generally depend on linear analysis in the
calculation of internal load distributions.

Fundamentally, the behavior of all types of structures——frameworks
" plates, shells, or solids—is described by means of differential equations.
" In practice, the writing of differential equations for framed structures is
rarely necessary. It has been long established that such structures may be
treated as assemblages of one-dimensional members. Exact or approximate
solutions to the ordinary differential equations for each member are well-
known. These solutions can be cast in thé form of relationships between
the forces and the displacements at the ends of the member. Proper combi-
nations of these relationships with the equations of equilibrium and compat-
ibility at the joints and supports yields a system of algebraic equations that
describes the behavior of the structure.

Structures consisting of two- or three-d:mensmnal components—plates,
membranes, shells, solids—are more complicated in that rarely do exact
solutions exist for the applicable partial differential equations. One approach
to obtaining practical, numerical solutions is the finite element method. The
basic concept of the method is that a continuum (the total structure) can
be modeled analytically by its subdivision into regions (the finite elements),
in each of which the behavior is described by a set of assumed functions
representing the stresses or displacements in that region. This permits the
problem formulation to be altered to one of the establishment of a system
of algebraic equations.
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The practical, numerical solution of problems in structural analysis
thus is seen to involve the formation and solution of systems—sometimes
very large systems—of algebraic equations. Also it should be fairly clear
that a member of a framed structure is simply one example of a more broadly
defined famlly of finite elements.

Viewed in this way, structural analysis may be broken down into five
parts:

1. Basic mechanics. The fundamental relationships of stress and strain, com-
patibility, and equilibrium.

2. Finite element mechanics. The exact or approximate solution of the dif-
ferential equations of the element.

3. Equation formulation. The establishment of the governing algebraic
equations of the system.

4. Equation solution. Computational methods and algorithms.

5. Solution interpretation. The presentation of results in a form useful in
design.

This book deals chiefly with parts3 to 5 of the above process. Specifi-
cally, it is on matrix structural analysis. This is the approach to these parts
that currently seems to be most suitable for automation of the equation-
formulation process and for taking advantage of the powerful capabilities
of the electronic digital. computer in solving large-order systems of equations.
An understanding of basic structural mechanics and basic matrix algebra
is presumed. Except for a briel introduction to the concepts of finite elements
in Chapter 12, only that segment of the finite element method relating to
framed structures will be included, other aspects being left to texts special-
jzing in the fundamentals of finite element mechanics (e.g., Ref. 1.1). Com-
putational methods and algorithms will be discussed in Chapter 11, but
more comprehensive coverage can be found in books on numerical analysis
(e.g., Ref. 1.2). g

An appreciation of the approach to structural analysis we are taking
requires some understanding of the history of this and re]ated subjects.
The following brief review may help.

1.1 A Brief History of Structural Analysis
Although it was immediately preceded by the great accomplishments of the
school of French elasticians, such as Navier and St. Venant, the period from
1850 to 1875 is a logical starting point for our review. The concept of frame-
work analysis emerged during this period, through the efforts of Maxwell
(Ref. 1.3), Castigliano (Ref. 1.4), and Mohr (Ref. 1.5), among others. At the
same time, the concepts of matrices were being introduced and defined by
Sylvester, Hamilton, and Cayley (Ref. 1.6). These concepts are the foundations
of matrix structural analysis, which did not take form until nearly 80 years
later. '
An excellent chronicle of developments in structural mechanics. in the
period 1875 to 1920 is found in Timoshenko’s History of Strength of Mate-



