o 8 E oSt B MM %K MR 5

Bdvi Gkt 5]l K A

(Javaﬂﬁ) (55)

Data Structures and Pmblem Solving Using Java

‘ i}lﬂ thi

‘ii!i (4 E
~ Second Edition)16
msmwnn =9

it u&‘tm gl

Data Structures & 317 * ' B
Problem Solving e
using JAVA b 41 e B
SO TN S G LRI G EP ERRE SR) B B EF E EP B EFE 10

. 3R

Mark Allen Weiss [£#] Mark Allen Weiss =

A
vw &~ 17N o [
PEARSON é ® ;‘ x ¥ :b FR 1i.
Addison ‘ Publishing House of Electronics Industry
sy =wa== http://www.phei.com.cn

ESMT R EE T RS

IR LT S (o) K R

(JavahR) (SEZhR)
(F&X)

Data Structures and Problem Solving Using Java

Second Edition

TF IF & &AL
Publishing House of Electronics Industry
JtE - BELING

RE® T

A BERARITH Java B ENRRES , FENE TREESHNRE . 2B NARES . £S48
Java HBR R HHER, FUAVER Java BT . BUERBMSEAF, BAERS, FNNMETEENRY
— BB, BB RS RY Java L FIBF R O & (APD) PRI MERE M E O AP R AN L R E R it
FITVENA, HRAEERES T RIS 5 =R R ERRGWAELIR TR, 55X
AR A BT I T R R 5 NS RN ARFE O R P AT N EFEE S E
H, #5085 FEMABHLGRR. EERINA T —ERAHBIESH .

BEMAE LR, EE REHMEME S AN RBIREWRNIIGRE, TRENZENMEE, ERATENL
B X SRR SARIRE) ‘

FHHESERE, BER, AEHH, TENEFREITTEIEKGS L SHAYR AT b N GEEAM
HBERE, WAHHENTRERARSS.

English reprint Copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and Publishing House of Electronics
Industry.

Data Structures and Problem Solving Using Java, Second Edition, ISBN: 0201748355 by Mark Allen Weiss. Copyright © 2002.
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison Wesley.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special Administrative Region of

Hong Kong and Macau).

2= B EN AR e A8 F Tl th AR F Pearson Education 354 #F HARTE WA FRA R S1EHAR . K& R# Bl
CBEFF, AMEUUEM TR S R A BT
233 HRGH Pearson Education 34 # H B ABOEE T, TATEE ARHE.

B RABEEZRIES EF: 01-2003-6236
HBEREKES (CIP) ¥R

BELEM 5K Java iR =Data Structures and Problem Solving Using Java: 552 fi/ (3) 87 (Weiss, M. A.) %.
-JeE: BF T AR, 2004.1

(ESMTEYAEH R])

ISBN 7-5053-9492-4

1.%.. 0.5 M.OSEEW -2 -5 OJAVAEES -BERIT -8 -3 IV.TP311.12 TP312
o] A< B 40 CIP BB (2003) %5 1190745

HiEmE: FHRE
Ep Bl ALEE AR
HEREFT: BTk Rt
tETRER THR 17358 BR4: 100036
B BHEFERE
#. 787 x 980 1/16 E3g: 5775 FH. 1204 FF
K: 2004 4E 1 A% 1 KELH
#t: 78.007C

f B H W

AR F Tl a4, I s R, HakBERLR; &HEER, F5RRITHKR,
BEEHTE: (010) 68279077, REVFER IS ZE Ats@phei.comen, WERRFIZEHRIERIMEZE dbgq@phei.com.cno

H R % A

21 YK 5 2 10 FRREEREF &R BHEZENY, WA ERSIRERErXE
B, ZREMAWTOEHASK, HHE—TENERMLESH—RIT AA INMIERESSHB Y
BEAFZ—. FEAENEATEAANRS 5LE, RRETN BiFES RN SEEE,

I, EERESSHE IR AR EENNH T AR, TENERNE, AEREHEK
-5 BRI, B R R B IEZE N R (5 B2 R IH AR R 6 E S ME e #0b R 55 [EAR
b, LMERBEAETTEEEE ERYGE EEBRE#HAKT

P LB RHRREBERTFHEEIMEERBHZE, BFURT “EINTEVREEHM A
7 AH, XEBMBEFERNLE . SRE. BRE, WA RS IEREM, APt e
B, LENARIBER . RRIE . RRZE R KT T B TR, 1 RIA R & b a8 ha
SRR XEHMW R AER T RSN SEE . BERS. TENAN SN . Bk 5HiES
. BE|ESFELE, RRES . BERERSSEE, RETRS, Fef, RIHES5I# T —
SR TSR RRSA | 48 BIRRR A A SORARIF 2 A S0, Wof 28 o0 P 35 R 4R (R 30 TR A S 4R {44
UVA: of 2 307

FEEBEE L, RTKRERLERE SN E L H AR 7 AR A B Bk, {1 Pearson Education B4 #
B HRER . 857 - B/RYE HIRER . FRETE T30 R SISl Bt %, BEHHEY
W BEEMBREF RN &, WEAEHT - LR Douglas E. Comer), BlEE - BTHEAHI William
Stallings). FA%E - BUFF/K (Harvey M. Deitel), JEHHfF « #i3F (Uyless Black) %5,

HFRE R R ER R R, ROTAE TR, AR, AFMSHARE. 5
BR%¥., DEGERE. BRA¥E. WITLKF. BMRETI RS, PR k¥, FEERE.
ERREEARARY: BRER TR ¥EELBRNBENE TS5 TE RS S o058 . i
MHERTAE. ATPERA HEREREM N ETEN. Bt, bR T ILHEREL B ER L
HEERIH.

EERFIBAHO3EE ., BEMEEN TIEES, MREEMEE, RIM T XEHBNITIE,
AR B AT 2SR, EFRRER IRABI X O XHHER . EP IR B T B %,
X FEXHEM P IR, RITELSEEBER L TERRETR, B—-H#HTTHIT,

o, BALEN HESNE L B IRA T AE, REE— B8 M BE R0, BB IR LI
RULHBY, 45, RITBEENERESSBREBMKERER, A KIF45 | #EZHEIMLE EH
MBEH, AREIHBIREEEERSERBEEROERMELE .

A ol di it

x

S

&

Ej3=20 4

HHHMERS

EHREHT
FE R BBt
R RFEERE S TR ERE
JEF R TREA R

FEARKZREFBRK ., R

EEREHENRE SERRHE
EirE B ER 2B ERETENE

BHERFHBEYRESEORRBE
FEHENSESEEEVEREL

HEARBRERT RFHR
LEMBHATRPOELE, BLAERM

TERERFHENR S TREAHR
HEamitEERPLEL

I EREERER RSO EE . EERFEHE
FER AR SHEE . RS EYASHEEK

E P RE R AR KT AR EE . AT
HEHH BN AR FESEREBEMERA

F B REE BT RERER

PREFACE

HIS book is designed for a two-semester sequence in computer science,
beginning with what is typically known as Data Structures (CS-2) and
continuing with advanced data structures and algorithm analysis.

The content of the CS-2 course has been evolving for some time.
Although there is some general consensus concerning topic coverage, consid-
erable disagreement still exists over the details. One uniformly accepted topic
is principles of software development, most notably the concepts of encapsu-
lation and information hiding. Algorithmically, all CS-2 courses tend to
include an introduction to running-time analysis, recursion, basic sorting
algorithms, and elementary data structures. An advanced course is offered at
many universities that covers topics in data structures, algorithms, and run-
ning-time analysis at a higher level. The material in this text has been
designed for use in both levels of courses, thus eliminating the need to pur-
chase a second textbook.

Although the most passionate debates in CS-2 revolve around the choice
of a programming language, other fundamental choices need to be made,
including: ’

® whether to introduce object-oriented design or object-based design
early,

m the level of mathematical rigor,

m the appropriate balance between the implementation of data struc-
tures and their use, and

®m Programming details related to the language chosen (for instance,
should GUISs be used early)

«21-

£ 22 -

My goal in writing this text was to provide a practical introduction to data
structures and algorithms from the viewpoint of abstract thinking and prob-
lem solving. I tried to cover all of the important details concerning the data
structures, their analyses, and their Java implementations, while staying away
from data structures that are theoretically interesting but not widely used. It is
impossible to cover all the different data structures, including their uses and
the analysis, described in this text in a single course. So, I designed the text-
book to allow instructors flexibility in topic coverage. The instructor will need
to decide on an appropriate balance between practice and theory and then
choose those topics that best fit the course. As I discuss later in this Preface, 1
organized the text to minimize dependencies among the various chapters.

A UNIQUE APPROACH

My basic premise is that software development tools in all languages come
with large libraries, and many data structures are part of these libraries. I
envision an eventual shift in emphasis of data structures courses from
implementation to use. In this book I take a unique approach by separating
the data structures into their specification and subsequent implementation
and taking advantage of an already existing data structures library, the Java
Collections API.

A subset of the Collections API suitable for most applications is discussed
in a single chapter (Chapter 6) in Part II. Part II also covers basic analysis
techniques, recursion, and sorting. Part III contains a host of applications that
use the Collections API’s data structures. Implementation of the Collections
API is not shown until Part IV, once the data structures have already been
used. Because the Collections API is part of Java since version 1.2 (older
compilers can use the textbook’s Collections API code instead—see Code
Availability, page xv), students can design large projects early on, using exist-
ing software components.

Despite the central use of the Collections API in this text, it is neither a
book on the Collections API nor a primer on implementing the Collections
API specifically; it remains a book that emphasizes data structures and basic
problem-solving techniques. Of course, the general techniques used in the
design of data structures are applicable to the implementation of the Collec-
tions AP, so several chapters in Part IV include Collections API implementa-
tions. However, instructors can choose the simpler implementations in Part IV
that do not discuss the Collections API protocol. Chapter 6, which presents
the Collections API, is essential to understanding the code in Part III. I
attempted to use only the basic parts of the Collections APL

Many instructors will prefer a more traditional approach in which each
data structure is defined, implemented, and then used. Because there is no
dependency between material in Parts III and IV, a traditional course can eas-
ily be taught from this book.

PREREQUISITES

Students using this book should have knowledge of either an object-oriented
or procedural programming language. Knowledge of basic features, including
primitive data types, operators, control structures, functions (methods), and
input and output (but not necessarily arrays and classes) is assumed.

Students who have taken a first course using C++ or Java may find the first
four chapters “light” reading in some places. However, other parts are definitely
“heavy” with Java details that may not have been covered in introductory courses.

Students who have had a first course in another language should begin at
Chapter 1 and proceed slowly. If a student would like to use a Java reference
book as well, some recommendations are given in Chapter 1, pages 3-25.

Knowledge of discrete math is helpful but is not an absolute prerequisite.
Several mathematical proofs are presented, but the more complex proofs are
preceded by a brief math review. Chapters 7 and 19—24 require some degree
of mathematical sophistication. The instructor may easily elect to skip mathe-
matical aspects of the proofs by presenting only the results. All proofs in the
text are clearly marked and are separate from the body of the text.

SUMMARY OF CHANGES IN
THE SECOND EDITION

1. Much of Part I was rewritten. In Chapter 2, after primitive arrays are
presented, a discussion of ArraylList and the add method is intro-
duced. Material in Chapter 3 now includes a more detailed example
concerning static fields and methods. In Chapter 4, the discussion on
inheritance was rewritten to simplify the initial presentation. The end
of the chapter contains the more esoteric Java details that are impor-
tant for advanced uses.

2. Material on design patterns has been added in various parts of the
text. Several patterns, including Composite is described,in Chapter 3,
Wrapper, Adapter, Decorator, and Functor, are described in Chapter
4, and Iterator is described in Chapter 6.

«23.

3. The Data Structures chapter in Part IT was rewritten with the Collec-

tions API in mind. Both generic interfaces (as in the first edition) and
Collections API interfaces are illustrated in the revised Chapter 6.

The code in Part 111 is based on the Collections API. In several places,
the code is more object-oriented than before. The Huffman coding
example is completely coded.

In Part IV, generic data structures were rewritten to be much simpler
and cleaner. Additionally, as appropriate, a simplified Collections API
implementation is illustrated at the end of the chapters in Part IV.
Implemented components include Arraylist, LinkedList, Stack,
TraeSet, TreeMap, HashSet, HashMap, and various interfaces, function
objects and algorithms.

JAVA

This textbook presents material using the Java programming language. Java is
a relatively new language that is often examined in comparison with C++.
Java offers many benefits, and programmers often view Java as a safer, more
portable, and easier-to-use language than C++.

The use of Java requires that some decisions be made when writing a text-
book. Some of the decisions made are as follows:

1.

The minimum required compiler is Java 1.2: Of course all code will
work with Java 1.3 or 1.4. However, using Collections API requires a
Java 1.2 compiler. Please make sure you are using a compiler that is
Java 1.2-compatible.

GUIs are not emphasized: Although GUIs are a nice feature in Java,
they seem to be an implementation detail rather than a core CS-2
topic. We do not use Swing in the text, but because many instructors
may prefer to do so, a brief introduction to Swing is provided in
Appendix B.

Applets are not emphasized: Applets use GUIs. Further, the focus of
the course is on data structures, rather than language features. Instruc-
tors who would like to discuss applets will need to supplement this
text with a Java reference.

Inner classes are used: These are used primarily in the implementa-
tion of the Collections API, and can be avoided by instructors who
prefer to do so.

5. The concept of a pointer is discussed when reference variables are
introduced: Java does not have a pointer type. Instead, it has a refer-
ence type. However, pointers have traditionally been an important
CS-2 topic that needs to be introduced. I illustrate the concept of
pointers in other languages when discussing reference variables.

6. Threads are not discussed: Some members of the CS community
argue that multi-threaded computing should become a core CS-1/2
topic. Although it is possible that this will happen in the future, few
CS-1/2 courses discuss this difficult topic.

As with every programming language, Java also has some disadvantages.
It does not directly support generic programing, but a- workaround is required
that is discussed in Chapter 4. I/O support when using Java is minimal. The
examples herein make minimal use of the Java I/O facilities.

TEXT ORGANIZATION

In this text I introduce Java and object-oriented programming (particularly
abstraction) in Part I. I discuss primitive types, reference types, and some of
the predefined classes and exceptions before proceeding to the design of
classes and inheritance. The material in these chapters was substantially
rewritten. New to this edition is material on design patterns.

In Part II, I discuss Big-Oh and algorithmic paradigms, including recur-
sion and randomization. An entire chapter is devoted to sorting, and a separate
chapter contains a description of basic data structures. I use the Collections
API to present the interfaces and running times of the data structures. At this
point in the text, the instructor may take several approaches to present the
remaining material, including the following two.

1. Discuss the corresponding implementations (either the Collections
API versions or the simpler versions) in Part IV as each data structure
is described. The instructor can ask students to extend the classes in
various ways, as suggested in the exercises.

2. Show how each Collections API class is used and cover implementa-
tion at a later point in the course. The case studies in Part III can be
used to support this approach. As complete implementations are
available on every modern Java compiler, the instructor can use the
Collections API in programming projects. Details on using this
approach are given shortly.

Part V describes advanced data structures such as splay trees, pairing
heaps, and the disjoint set data structure, which can be covered if time permits
or, more likely, in a follow-up course.

CHAPTER-BY-CHAPTER TEXT ORGANIZATION

Part I consists of four chapters that describe the basics of Java used through-
out the text. Chapter 1 describes primitive types and illustrates how to write
basic programs in Java. Chapter 2 discusses reference types and illustrates the
general concept of a pointer—even though Java does not have pointers—so
that students learn this important CS-2 topic. Several of the basic reference
types (strings, arrays, files, and string tokenizers) are illustrated, and the use
of exceptions is discussed. Chapter 3 continues this discussion by describing
how a class is implemented. Chapter 4 illustrates the use of inheritance in
designing hierarchies (including exception classes and I/0O) and generic com-
ponents. Material on design patterns, including the wrapper, adapter, decora-
tor patterns can be found in Part I.

Part II focuses on the basic algorithms and building blocks. In Chapter 5 a
complete discussion of time complexity and Big-Oh notation is provided.
Binary search is also discussed and analyzed. Chapter 6 is crucial because it
covers the Collections API and argues intuitively what the running time of the
supported operations should be for each data structure. (The implementation
of these data structures, in both Collections API-style and a simplified ver-
sion, is not provided until Part IV). This chapter also introduces the iterator
pattern as well as nested, local, and anonymous classes. Inner classes are
deferred until Part IV, where they are discussed as an implementation tech-
nique. Chapter 7 describes recursion by first introducing the notion of proof
by induction. It also discusses divide-and-conquer, dynamic programming,
and backtracking. A section describes several recursive numerical algorithms
that are used to implement the RSA cryptosystem. For many students, the
material in the second half of Chapter 7 is more suitable for a follow-up
course. Chapter 8 describes, codes, and analyzes several basic sorting algo-
rithms, including the insertion sort, Shellsort, mergesort, and quicksort, as
well as indirect sorting. It also proves the classic lower bound for sorting and
discusses the related problems of selection. Finally, Chapter 9 is a short chap-
ter that discusses random numbers, including their generation and use in ran-
domized algorithms.

Part III provides several case studies, and each chapter is organized
around a general theme. Chapter 10 illustrates several important techniques
by examining games. Chapter 11 discusses the use of stacks in computer lan-

guages by examining an algorithm to check for balanced symbols and the
classic operator precedence parsing algorithm. Complete implementations
with code are provided for both algorithms. Chapter 12 discusses the basic
utilities of file compression and cross-reference generation, and provides a
complete implementation of both. Chapter 13 broadly examines simulation by
looking at one problem that can be viewed as a simulation and then at the
more classic event-driven simulation. Finally, Chapter 14 illustrates how data
structures are used to implement several shortest path algorithms efficiently
for graphs.

Part IV presents the data structure implementations. Chapter 15 is new. It
discusses inner classes as an implementation technique and illustrates their
use in the Arraylist implementation. In the remaining chapters of Part IV,
implementations that use simple protocols (insert, find, remove variations) are
provided. In some cases, Collections API implementations that tend to use
more complicated Java syntax (in addition to be complex because of their
large set of required operations) are presented. Some mathematics is used in
this part, especially in Chapters 1921, and can be skipped at the discretion of
the instructor. Chapter 16 provides implementations for both stacks and
queues. First these data structures are implemented using an expanding array,
then they are implemented using linked lists. The Collections API versions are
discussed at the end of the chapter. General linked lists are described in Chap-
ter 17. Singly linked lists are illustrated with a simple protocol, and the more
complex Collections API version that uses doubly linked lists is provided at
the end of the chapter. Chapter 18 describes trees and illustrates the basic tra-
versal schemes. Chapter 19 is a detailed chapter that provides several imple-
mentations of binary search trees. Initially, the basic binary search tree is
shown, and then a binary search tree that supports order statistics is derived.
AVL trees are discussed but not implemented, but the more practical red-
black trees and AA-trees are implemented. Then the Collections API TreeSet
and TreeMap are implemented. Finally, the B-tree is examined. Chapter 20 dis-
cusses hash tables and implements the quadratic probing scheme as part of
HashSet and HashMap, after examination of a simpler alternative. Chapter 21
describes the binary heap and examines heapsort and external sorting. There
is no priority queue in the Java 1.2 Collections AP, so we implement a simple
non-standard version.

Part V contains material suitable for use in a more advanced course or for
general reference. The algorithms are accessible even at the first-year level.
However, for completeness, sophisticated mathematical analyses that are
almost certainly beyond the reach of a first-year student were included. Chap-
ter 22 describes the splay tree, which is a binary search tree that seems to per-
form extremely well in practice and is competitive with the binary heap in

.27 .

28 -

some applications that require priority queues. Chapter 23 describes priority
queues that support merging operations and provides an implementation of
the pairing heap. Finally, Chapter 24 examines the classic disjoint set data
structure.

The appendices contain additional Java reference material. Appendix A
lists the operators and their precedence. Appendix B has material on Swing,
and Appendix C describes the bitwise operators used in Chapter 12.

CHAPTER DEPENDENCIES

Generally speaking, most chapters are independent of each other. However,
the following are some of the notable dependencies.

Part I (Tour of Java): The first four chapters should be covered in their
entirety in sequence first, prior to continuing on to the rest of the text.

Chapter 5 (Algorithm Analysis): This chapter should be covered prior
to Chapters 6 and 8. Recursion (Chapter 7) can be covered prior to this
chapter, but the instructor will have to gloss over some details about
avoiding inefficient recursion.

Chapter 6 (The Collections API): This chapter can be covered prior to,
or in conjunction with, material in Part I or IV. ‘

Chapter 7 (Recursion): The material in Sections 7.1-7.3 should be cov-
ered prior to discussing recursive sorting algorithms, trees, the tic-tac-toe
case study, and shortest-path algorithms. Material such as the RSA cryp-
tosystem, dynamic programming, and backtracking (unless tic-tac-toe is
discussed) is otherwise optional.

Chapter 8 (Sorting Algorithms): This chapter should follow Chapters 5
and 7. However, it is possible to cover Shellsort without Chapters 5 and
7. Shellsort is not recursive (hence there is no need for Chapter 7), and a

rigorous analysis of its running time is too complex and is not covered in
the book (hence there is little need for Chapter 5).

Chapter 15 (Inner Classes and Implementations of ArrayLists):
This material should precede the discussion of the Collections API
implementations.

Chapters 16 and 17 (Stacks and Queues/Linked Lists): These chapters
may be covered in either order. However, I prefer to cover Chapter 16
first, because I believe that it presents a simpler example of linked lists.
Chapters 18 and 19 (Trees/ Binary Search Trees): These chapters can
be covered in either order or simuitaneously.

SEPARATE ENTITIES

The other chapters have little or no dependencies:

® Chapter 9 (Randomization): The material on random numbers can be
covered at any point as needed.

W Part III (Applications). Chapters 1014 can be covered in conjunction
with, or after, the Collections API (in Chapter 6), and in roughly any
order. There are a few references to earlier chapters. These include Sec-
tion 10.2 (tic-tac-toe), which references a discussion in Section 7.7, and
Section 12.2 (cross-reference generation), which references similar lexi-
cal analysis code in Section 11.1 (balanced symbol checking).

® Chapters 20 and 21 (Hash Tables/A Priority Queue): These chapters
can be covered at any point.

® Part V (Advanced Data Structures). The material in Chapters 22-24 is
self-contained and is typically covered in a follow-up course.

MATHEMATICS

I have attempted to provide mathematical rigor for use in CS-2 courses that
emphasize theory and for follow-up courses that require more analysis. How-
ever, this material stands out from the main text in the form of separate theo-
rems and, in some cases, separate sections or subsections. Thus it can be
skipped by instructors in courses that deemphasize theory.

In all cases, the proof of a theorem is not necessary to the understanding
of the theorem’s meaning. This is another illustration of the separation of an
interface (the theorem statement) from its implementation (the proof). Some
inherently mathematical material, such as Section 7.4 (Numerical Applica-
tions of Recursion), can be skipped without affecting comprehension of the
rest of the chapter.

COURSE ORGANIZATION

A crucial issue in teaching the course is deciding how the materials in Parts
II-IV are to be used. The material in Part I should be covered in depth, and the
student should write one or two programs that illustrate the design, implemen-
tation, testing of classes and generic classes, and perhaps object-oriented

«20 .

<30 -

design, using inheritance. Chapter 5 discusses Big-Oh notation. An exercise
in which the student writes a short program and compares the running time
with an analysis can be given to test comprehension.

In the separation approach, the key concept of Chapter 6 is that different
data structures support different access schemes with different efficiency. Any
case study (except the tic-tac-toe example that uses recursion) can be used to
illustrate the applications of the data structures. In this way, the student can
see the data structure and how it is used but not how it is efficiently imple-
mented. This is truly a separation. Viewing things this way will greatly
enhance the ability of students to think abstractly. Students can also provide
simple implementations of some of the Collections API components (some
suggestions are given in the exercises in Chapter 6) and see the difference
between efficient data structure implementations in the existing Collections
API and inefficient data structure implementations that they will write. Stu-
dents can also be asked to extend the case study, but again, they are not
required to know any of the details of the data structures.

Efficient implementation of the data structures can be discussed after-
ward, and recursion can be introduced whenever the instructor feels it is
appropriate, provided it is prior to binary search trees. The details of sorting
can be discussed at any time after recursion. At this point, the course can con-
tinue by using the same case studies and experimenting with modifications to
the implementations of the data structures. For instance, the student can
experiment with various forms of balanced binary search trees.

Instructors who opt for a more traditional approach can simply discuss a
case study in Part ITI after discussing a data structure implementation in Part
IV. Again, the book’s chapters are designed to be as independent of each other
as possible.

EXERCISES

Exercises come in various flavors; I have provided four varieties. The basic In
Short exercise asks a simple question or requires hand-drawn simulations of
an algorithm described in the text. The In Theory section asks questions that
either require mathematical analysis or asks for theoretically interesting solu-
tions to problems. The In Practice section contains simple programming
questions, including questions about syntax or particularly tricky lines of
code. Finally, the Programming Projects section contains ideas for extended
assignments.

PEDAGOGICAL FEATURES

® Margin notes are used to highlight important topics.

® The Objects of the Game section lists important terms along with defini-
tions and page references.

m The Common Errors section at the end of each chapter provides a list of
commonly made errors.

® References for further reading are provided at the end of most chapters.

CODE AND POWERPOINT SLIDES AVAILABILITY

The code in the text is fully functional and has been tested on Sun’s JDK 1.2,
1.3, and 1.4 (beta). It is available from http://www.aw.com/cssupport. The On
the Internet section at the end of each chapter lists the filenames for the chap-
ter’s code. Power Point slides of all the figures in the book are also available
from this site.

INSTRUCTOR'S RESOURCE GUIDE

An Instructor’s Guide that illustrates several approaches to the material is
available. It includes samples of test questions, assignments, and syllabi.

Answers to select exercises are also provided. Instructors should contact their-

Addison Wesley local sales representative for information on its availability.
This guide is not available for sale and is available to instructors only.

ACKNOWLEDGMENTS

Many, many people have helped me in the preparation of this book. Many
have already been acknowledged in the first edition and the related title, Data
Structures and Problem Solving Using C++. Others, too numerous to list,
have sent e-mail messages and pointed out errors or inconsistencies in expla-
nations that I have tried to fix in this version.

For this book, I would like to thank all of the folks at Addison-Wesley:
my editor, Susan Hartman Sullivan, and project editor, Katherine

.31 .

«32 .

Harutunian, helped me make some difficult decisions regarding the organiza-
tion of the Java material and were very helpful in bringing this book to frui-
tion. Gina Hagen did a lovely cover design. As always, Michael Hirsch has
done a superb marketing job. I would especially like to thank Pat Mahtani, my
production editor, and Caroline Roop at Argosy for their outstanding efforts
coordinating the entire project.

I also thank the reviewers, who provided valuable comments, many of
which have been incorporated into the text:

Divyakant Agrawal, University of California at Santa Barbara
Claude W. Anderson, Rose-Hulman Institute of Technology
David Avis, McGill University

Michael Clancy, University of California at Berkeley

Chris Eason, Valdosta State University

Tim Herman, Digital Anatomy, Inc.

Gurdip Singh, Kansas State University

Some of the material in this text is adapted from my textbook Efficient C
Programming: A Practical Approach (Prentice-Hall, 1995) and is used with
permission of the publisher. I have included end-of-chapter references where
appropriate.

My World Wide Web page, http://www.cs.fiu.edu/~weiss, will contain
updated source code, an errata list, and a link for receiving bug reports.

MAW.
Miami, Florida

