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IPREFACE

The central theme of this book is the theory of normed linear spaces and of
linear mappings between such spaces. The text provides the necessary
foundation for further study in many areas of analysis, and it strives to
generate an appreciation for the unifying power of the abstract linear-space
point of view in surveying the problems of linear algebra, classical anal-
ysis, and differential and integral equations. While the book is principally
addressed to graduate students, it is also intended to be useful to mathe-
maticians and users of mathematics who have need of a simple and direct
presentation of the fundamentals of the theory of linear spaces and linear
operators.

In many respects, this new edition is similar to the first edition written by
Taylor. The prerequisites are the same—the reader should already be
acquainted with the fundamentals of real and complex analysis and elemen-
tary point set topology. The manner and level of presentation are essentially
unchanged, although the scope of the text has been broadened somewhat, and
the emphasis on concrete examples and connections with classical mathema-
tics has been retained.

The revision was made in order to incorporate recent developments in
functional analysis and to make the selection of topics more appropriate for
current courses in functional analysis. Significant additions to this new
edition include a chapter on Banach algebras, and material on weak topolo-
gies and duality, eqlicontinuity, the Krein-Milman theorem, and the theory
of Fredholm operators. Furthermore, there is greater emphasis on closed
unbounded linear operators, with more illustrations drawn from ordinary
differential equations. Two background chapters from the first edition (on
topology and some topics in integration theory) have been omitted because
the material has become part of the standard curriculum. A few facts from
those chapters are now reviewed as needed.

The problems in the text, increased from 300 to nearly 500, have been
carefully selected—they both illustrate and extend the theory, and they give
the reader an opportunity to construct arguments similar to those in the text.
The ¢” sequence spaces have been chosen for some of the concrete problems
and examples, in order to minimize the technical difficulties. In addition,
there are problems that relate to differential equations, integral equations,

and the theory of analytic functions.
vi



PREFACE vii

The book begins with a concise review of linear algebra and an intro-
duction to linear problems in analysis, omitting topological considerations.
An analytic version of the Hahn-Banach theorem is given in § [.10. A
well-prepared reader may start with Chapter II, using Chapter I as areference
when necessary. The first part of Chapter II is on normed linear spaces.
However, the basic theory of topological linear spaces is important because it
is frequently used today in analysis and because it is relevant in the study of
normed linear spaces. This basic theory is developed in parts of Chapters 11
and III. Certain optional topics are identified in the introductions to these
chapters. '

The subject of linear operators is begun in detail in Chapter IV, with
some of the most important results in Chapters IV and V depending on
completeness of the underlying spaces. However, unless needed for effective
results, the hypothesis of completeness is not invoked. The exposition is not
materially lengthened by this greater generality. The more specialized and
distinctive theory of operators on Hilbert space is presented in §§ 3, 11, and
12 of Chapter I'V.

Chapter V stresses the importance of complex contour integration and
the calculus of residues in the spectral theory of linear operators. The
methods apply to all closed linear operators, bounded or not. Although
some familiarity with complex analysis is assumed in the text, the main
theorems needed for Chapter V are reviewed in § V.1. This chapter also
contains the famous Riesz theory of compact operators, as extended and
perfected by later research workers, and its application to the classical
“determinant-free” theorems for Fredholm integral equations of the second
kind. The subject of invariant subspaces is treated briefly in this chapter
as well.

Chapter VI presents the standard elementary theory of self-adjoint,
normal, and unitary operators on Hilbert space. The discussion of the theory
of compact symmetric operators and symmetric operators with compact
resolvent is very important for applications to integral and differential
equations. The completeness of the inner-product space under consideration
is not required here. The spectral analysis of self-adjoint operators is per-
formed with the aid of the Riesz representation theorem for linear functionals
on a space of continuous functions. The treatment is deliberately kept as close
as possible to classical analysis.

General Banach algebras and the Gelfand theory of commutative Banach
algebras are discussed in Chapter VII. Most of the development assumes the
existence of a unit, but some examples and problems show how the general
theory would proceed for algebras such as L'(R) that lack a unit. The chapter

is largely independent of Chapters IV to VI, except for the material in the

early sections of these three chapters. The text returns to operator theory in
the final section of Chapter VII, where two versions of the spectral theorem
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for normal operators on Hilbert space are derived from the G"lfand—Naimark
theorem for commutative B*-algebras. .

The sentor author (Taylor) wishes to include here a personal acknowl-
edgment of thanks to his coauthor: When I left U.C.L.A. to become the
academic vice-president of the University of California multicampus system,
I soon realized that my busy schedule would not enable me to carry forward
the task of revising the book and of tuning it anew to the needs of an
oncoming generation of students. Fortunately, David Lay, to whom I had
heen-close in his student days at U.C.L.A., was able and willing to coauthor
this book. He has done most of the revision, but we have been in close touch
throughout. I am both obIfgated by what he has done and immensely pleased
by his accomplishment and judgment.

One of the pleasures in writing books comes from the opportunities
afforded authors to improve the breadth and depth of their own understand-
ing of a subject in relation to its origins and applications. We hope that some
of the same pléasure will accrue to readers of this text. .

We are especially grateful to Professor Steven Lay who worked closely
with the junior author one summer and who made valuable contributions
during the early stages of the revision. We are also indebted to Professor
Denny Gulick whose suggestions and critical analysis of the manuscript led
to substantial improvements in the text. Our appreciation is extended to
Professors John Brace, Robert Ellis, and John Horvath, who class-tested
"portions of the text material and made helpful comments, and to Professor
_Seymour Goldberg for many stimulating discussions. We also wish to thank
Professor Ronald Douglas for his review of the manuscript and useful
remarks. ) '

Finally, we wish to thank our many students and colleagues who have,
through communications or conversations, influenced us in specific or per-
haps even unrealized ways and thereby, we hope; helped make a better book.

Berkeley, California Angus E. Taylor
College Park, Maryland v ' David C. Lay
March 1979



]

|CONTENTS

INTRODUCTION 1

THE ABSTRACT APPROACH TO LINEAR PROBLEMS 4

1.1 Abstract Linear Spaces 5

1.2 Examples of Linear Spaces 10

1.3  Linear Operators 13

1.4  Linear Operators in Finite-Dimensional Spaces 18
1.5 Other Examples of Linear Operators 21

1.6  Direct Sums and Quotient Spaces 28

1.7 Linear Functionals 31

I.8 Linear Functionals in Finite-Dimensional Spaces 35
1.9 Zorn’s Lemma 37

I.10 Extension Theorems for Linear Operators 38

1.11 Hamel Bases 41

1.12 The Transpose of a Linear Operator 44

1.13 Annihilators, Ranges, and Null Spaces 45

1.14 Conclusions 49

TOPOLOGICAL LINEAR SPACES 51
II.1  Normed Linear Spaces 52

I11.2 Examples of Normed Linear Spaces 56

11.3  Finite-Dimensional Normed Linear Spaces 62
I11.4 Banach Spaces 66

I1.5 Quotient Spaces 71

I1.6  Inner-Product Spaces 73

I1.7 Hilbert Space 86

I1.8 Examples of Complete Orthonormal Sets 91
I1.9 Topological Linear Spaces 94

11.10 Convex Sets 100

II.11 Locally Convex Spaces 105

I1.12 Minkowski Functionals 111

II.13 Metrizable Topological Linear Spaces 115

LINEAR FUNCTIONALS AND WEAK TOPOLOGIES 121

III.1 Linear Varieties and Hyperplanes 122
II1.2 The Hahn-Banach Theorem 125
I11.3 The Conjugate of a Normed Linear Space 134

1X

8550125



v

Vi

CONTENTS

I11.4 The Second Conjugate Space 139

1115 Some Representations of Linear Functionals- 141
I11.6  Weak Topologies for Linear Spaces 156

1I1.7  Poiar Sets and Annihilators 160

111.8 Equicontinuity and S-topologies 165

111.9  The Principle of Uniform Boundedness 169
111.10 Weak Topologies for Normed Linear Spaces 172
111.11 The Krein-Milman Theorem 181

GENERAI. THEOREMS ON LINEAR OPERATORS 188
IV.1  Spaces of Linear Operators 189

IV.2  Integral Equations of the Second Kind 196

IV3 ¥ Kernels 201

IV.4 * Differential Equations and Integral Equations 205

IV.5 Closed Linear Operators 208

IV.6  Some Representations of Bounded Linear Operators 219
IV.7 The M. Riesz Convexity Theorem 224 '
IV.8 Conjugates of Linear Operators 226

IV.9 Theorems About Continucus Inverses 234

IV.10 The States of an Operator and Its Conjugate 237

IV.11 Adjoint Operators 242

IV.12 Projections 246

IV.13 Fredholm Operators 253

SPECTRAL ANALYSIS OF LINEAR OPERATORS 264
V.1  Analytic Vector-Valued Functions 265

V.2  The Resolvent Operator 272

V.3  The Spectrum of a Bounded Linear Operator 277
V.4  Subdivisions of the Spectrum 282 :
V.5 Reducibility 287

V.6  The Ascent and Descent of an Operator 289

V.7 Compact Operators 293

V.8  An Operational Calculus 309

V.9  Spectral Sets. The Spectral Mapping Theorem 320
V.10 Isolated Points of the Spectrum 328

V.11 Operators with a Rational Resolvent 336

SPECTRAL ANALYSIS IN HILBERT SPACE 341
V1.1 Bilinear and Quadratic Forms 342 "

VI.2 Symmetric Operators 345

VL.3 Normal and Self-adjoint Operators 349

V1.4 Compact Symmetric Operators 353

V1.5 Symmetric Operators with Compact Resolvent 361

V1.6 The Spectral Theorem for Bounded Self-adjoint Operators 363

V1.7 Unitary Operators 374

VI.8 Urbounded Self-adjoint Operators 380



CONTENTS

Vil

BANACH ALGEBRAS

VII.l1 Examples of Banach Algebras 387

VIL.2 Spectral Theory in a Banach Algebra 393
VIL.3 Ideals and Homomorphismms 400

VI1.4 Commutative Banach Algebras 404

VIL.5 Applications and Extensions of the Gelfand Theory 415

VIL.6 B*-algebras 426
VII.7 The Spectral Theorem for a Normal Operator

BIBLIOGRAPHY
LIST OF SPECIAL SYMBOLS

INDEX

430

xi

386

445

455

459



'INTRODUCTION

It is the purpose of this introduction to explain certain terminology used
throughout the book and to list some inequalities for easy reference.

FUNCTIONS

Let X and Y be arbitrary nonempty sets and let 2 be a nonempty subset of X.
A function f from @ into Y is arule that to each x € @ assigns a unique element
f(x) in Y. We sometimes denote the function by the expression x — f(x). The
domain of f is the set 9, often written as 2(f), and the range of f is the set
R(f)={f(x):x € D}. The graph of f (sometimes identified with f itself) is the
set of ordered pairs {(x, f(x)):x € 9}. This is a particular kind of nonempty
subset of the Cartesian product X X Y of all ordered pairs (x, y), where x € X,
y € Y. A function g is said to be a restriction of f, and f an extension of g, if-
D(g) < D(f)and g(x) = f(x) for x ¢ D(g).

. We say that a function f is injective, or one-to-one, if for each y in the
range R(f) there exists only'one x in the domain 2(f) such that f(x) =y, and
we denote this unique x by f Y (y). When f is injective, the correspondence
v— f My)is afunction f ' called the i inverse of f, whose domain is #(f)and
- range is D(f). We sometimes say that ! xlsts in place of saying that f is
injective.

Jfoach y in ¥ is in the range of f, we say that f is sunectwe, or that f maps
m onto Y. If f is both injective and surjective, we say that f is
In this case f ' maps Y onto the domain of f.
Given Ac X, B< Y and f as above, we use the following notation.

fA)={fx):x e AnD(f),
f“(B)={x €2(f):f(x)e B}

medl f(A) the image of A under £ Note that f(A) = &, where & denotes the
set, if AN D(f) =D We callfﬂ(B) the inverse image of B underf We
suite £ (B) even though f ™' may not exist as a function. {In fact, f Vexists if
and oaly if £ Y(B) is a set consisting of a single element of 9( f) whenever B is
a set consisting of just one element of R(f).]

1
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INTRODUCTION
REAL AND COMPLEX NUMBERS

The real number system is denoted by R, the complex numbers by C. The real
and imaginary parts of a complex number A are written as Re A and Im A,
respectively. On occasion it will be necessary to work within the extended
real number system R U {+00} U {—0}. Algebraic operations in this system are
discussed in Tlaylor [5, pages 178-180].* The least unper bound (supremum)
and greatest lower bound (infimum) of a nonempty set S of real numbers
alwalys exist in the extended real number system; they are denoted by sup §
and inf S, respectively.

TOPOLOGY

We assume the reader is familiar with the basic definitions and theorems of
topology, such as those presented in Taylor [5, pages 89-140]. The closure
ofaset A inatopological space X isdenoted by A, the interior by int (A). We say
thataset V in X is a neighborhood of a point x € X if there exists anopen set U
such that x € U and U < V. (This usage follows the Bourbaki tradition and
differs from Taylor [5], where a neighborhood of r means an open set
containing x.) The space X is called a T} space if every set consisting of a
single point is closed. The space is a Hausdorff space (or T space) if for each
pair of distinct points x;, r2 € X there exist disjoint neighborhoods of x; and
x3, respectively. If 7, and 7, are topologies for the same set X, then 7, is called
weaker than 1o (equivalently, 7o is stronger than 7,) if every 7,-open set is
T9-Open.

THE KRONECKER DEL;[A

The symbol 8;; denotes the number 1 if i = j and the number 0 if ¢ # j. Here i
and j are positive integers.

INEQUALITIES

At a number of places in this book we use some of the standard inequalities
concerning sums and integrals. We list the most commonly used ones here.
The standard reference work on this subject is the book, Inequalities, by

Hardy, Littlewood, and Pélya [1]. In what follows we refer to this bookasH,
L, and P, and cite by number the section in which the stated inequality is
discussed. Most of the inequalities are given as exercises, with hints for

* Refercnces to the bibliography are made by listing the author’s name and a number in
brackets, identifying a book or article by that author.



INEQUALITIES 3

solutions, in Taylor [5, pages 119-120, 278]. In all inequalities the quantities
involved may be either real or complex. Sums are either all from 1 to n or fromn
1to o0, and in the latter case certain evident assumptions and implications of
convergence are involved. For simplicity the inequalities for integrals are
written for the case in which the functions are defined on a finite or infinite
interval of the real axis. The inequalities are valid with more general inter-
pretations of the set over which integration is extended.

Holder’s inequality for sums (H, L, and P, §2.8): If 1<p <o and
p'=p/(p—1), then

Ylabil < (Tlad”)" " (T|b:l?) .
The special case when p =p’' =2 is called Cauchy’s inequality (H, L, and P,

§2.4).
Minkowski’s inequality for sums (H, L, and P, § 2.11): If 1< p <0, then

(Xla;i+ bilp)”p = (Zl”ilp)”” + (Zlbilp)up-
Jensen’s inequality (H, L, and P, § 2.10): If 0<p <q, then
(Z'ailq)l/q = (Z|a¢|p)lh’-
Holder’s inequality for integrals (H, L, and P, §6.9): If 1<p <00 and
p'=p/(p—1), then o
1/p , i/p
[ e de=([1fr az) ([ 1ot dx)

The special case when p = p’ =2 is called the Schwarz inequality (H, L, and
P, § 6.5).

Minkowski’s inequality for integrals (H, L, and P, §6.13): If 1=<p <o,
then

([ 1+t de) " < ([ o ae) " + ([ et as)



I | THE ABSTRACT
APPROACH TO

LINEAR PROBLEMS

.

The modern treatment of many topics in pure and applied mathematics is
characterized by the effort that is made to strip away nonessential details and
to show clearly the fundamental assumptions and the structure of the reason-
ing. This effort often leads to some degree of abstraction, with the concrete
nature of the originally contemplated problem being temporarily put aside
and the aspects of the problem that are of greatest significance being cast into
axiomatic form. It is found that in this way there is a considerable gain in
transparency and that diverse problems exhibit common characteristics that -
enable them all to be at least partially solved by the methods of a single
general theory.

In this chapter we consider the algebraic aspects of such an abstract
approach to linear problems. In essence, all linear problems are viewed in
some measure as analcgous to the linear problems exhibited in elementary
algebra by the theory of systems of linear equations. The linear problems of
analysis usually require topological as well as algebraic considerations.
However, in this chapter, we exclude all concern with topology; the topolo-
gical aspects of the abstract approach to linear problems will be taken up in
later chapters. : ,

The most profound results of the chapter are the extension theorems in
§ 10 (Theorems 10.1 and 10.4) and Theorem 11.2 on the existence of a
complementary subspace. They all depend on Zorn’s lemma (§ 9). Theorem
10.4 is one version of the important Hahn-Banach theorem. Other versions
will be discussed in § 111.2 and § I11.3. ’

Chapter I culminates in § 13 with two theorems relating the range and
null space of a linear operator to the null space and range of the transpose of
the operator (Theorems 13.4 and 13.5). These theorems furnish information
on existence and uniqueness theorems for certain kinds of linear problems. .
For the finite-dimensional case these theorems include the standard results
concerning algebraic systems of linear equations. In the infinite-dimensions]
case the results are not as useful as results that can be obtained with the aid of
metric or topological tools. Nevertheless, the material of § 13 points the way
to more incisive results, some of which are given in § IV.8.

4



L1 ABSTRACT LINEAR SPACES 5
1.1 ABSTRACT LINEAR SPACES

We have as yet made no formal definition of what is meant by the adjective
linear in the phrase “linear problems.” We can cite various particular kinds of
" linear problems: the problems of homogeneous and inhomogeneous systems
of linear equations in n “unknowns” in elementary algebra; the problems of
the theory of linear ordinary differential equations (existence theorems,
particular and general solutions, problems of finding solutions satisfying
given conditions at one or two end points); boundary or initial-value prob-
lems in the theory of linear partial differential equations; problems in the
theory of linear integral equations; linear “transform” problems, for example,
problems related to Fourier and Laplace transforms. This is by no means an
exhaustive list of the types of mathematical situations in which linea
problems arise. :
Atthe bottom of every linear problem is a mathematical structure called a
linear space. We shall, thetefore, begin with an axiomatic treatment of
abstract linear spaces.

Definition. Let X be a set of elements, hereafter sometimes called
points, and denoted by small italic letters: x, y, . . . . We assume that each pair
of elements x, y can be combined by a process called addition to yield another
element z denoted by z = x + y. We also assume that each real number @ and
each element z can be combined by a process called multiplication to yield
another element y denoted by y = ax. The set X with these two processes is
called a linear space if the following axioms are satisfied:

r+y=y+x.

z+(gee)=(x+y)+z

There is in X a unique element, denoted by 0 and called the zero
element, such that x +0 =« for each .

Yo each £ in X corresponds a unique element, denoted by —x, such
that x + (~x)=0.

als+y)=ax+ay.

(e +8)x =ax +Bx.

«(Bz)=(af)x.

1. g=x.

0 -x=0.

we -

epaan

Anyene who is familiar with the algebra of vectors in ordinary three-
sional Euclidean space will see at once that the set of all such vectors

a linear space. An abstract linesr space embodies so many of the
Sestures of ordinary vector algebra that the word vector has been taken over
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into a more general context. A linear space is often called a vector space, and
the elements of the space are called vectors.

In the foregoing list of axioms it was assumed that the multiplication
operation was performed with real numbers, a, 8. To emphasize this, if
necessary, we call the space a real linear space, or a real vector space. An
alternative notion of a linear space is obtained if it is assumed that any
complex number a and any element x can be multiplied, yielding another
element ax. The axioms are the same as before. The space is then called a
complex linear space. _

The notion of a vector space is defined even more generally in abstract
algebra, by allowing the multipliers a, 3, .. . to be elements of an arbitrary
commutative field. In this book, however, we confine ourselves to the two
fields of real and complex numbers, respectively. The elements of the field are
called scalars, to contrast with the vector elements of the linear space.

It is easy to see that —1 - x=—x and that a - 0=0. We write x —y for
convenience in place of x +(—y). The following “cancellation” rules are also
easily deduced from the axioms:

(1-1) x+y=r+zimpliesy =z,
(1-2) ax =ay and « #0imply x = y;

(1-3) ax =Bx and x #0 imply a = 8.

Definition. A nonempty subset M of a linear space X is called a linear
manifold in X if x +y is in M whenever x and y are both in M and if also ax is
in M whenever z is in M and « is any scalar.

In this definition and generally throughout the book, statements made
about linear spaces, without qualification as to whether the space is real or
complex, will be intended to apply equally to real spaces and complex spaces.

It will be seen at once that, if M is a linear manifold in X, it may be
regarded as a linear space by itself. For, if x is in M, then -1 - x = —x is alsoin
M, and x — x = 01is also in M. The nine axioms for a linear space are now found
to be satisfied in M. Another term for a linear manifold in X is subspace of X.
A subspace of X is called proper if it is not all of X.

The set consisting of 0 alone is a subspace. We denote it by (0).

Suppose S is any nonempty subset of X. Consider the set M of all finite
linear combinations of elements of S, that is, elements of the form a;x; ++- -+
a,x,, where n is any positive integer (not fixed), x1, . . ., X, are any elements of
S and ay, ..., a, are any scalars. This set M is a linear manifold. Itis called
the linear manifold generated, or determined, by S. Sometimes we'speak of M
as the linear manifold spanned by S. It is easy to verify the truth of the
following statements: (1) M consists of those vectors that belong to every
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linear manifold that contains §; that is, M is the intersection of all such
manifolds. (2) M is the smallest linear manifold that contains §; that is, if N is
a linear manifold that contains S, then M is contained in N.

One of the most important concepts in a vector space is that of linear
dependence.

Definition. A finite set of vectors x1, ..., x, in the space X is [inearly
dependent if there exists scalars a1, . . ., a,, notall zero, such that a;x,+- - -+ +
a,x, =0. If the finite set x;,..., x, is not linearly dependent, it is called
linearly independent. In that case, a relation a;x, + - - - + a,x, =0 implies that
a;=--=a, =0. An infinite set S of vectors is called linearly independent if
every finite subset of S is linearly independent; otherwise S is called linearly
dependent.

Observe that if a set of vectors contains a linearly dependent subset, the
whole set is linearly dependent. Also note that a linearly independent set
cannot contain the vector 0.

We note the following simple but important theorem, of which use will
be made in later arguments:

Theorem 1.1. Supposex,, ..., x,isasetof vectors withx, #0. The setis
linearly dependent if and only if some one of the vectors x,, . . ., x,, say x, is in
the linear manifold generated by x, . . ., xx_).

Proof. Suppose the setis linearly dependent. There is a smallest integer
k, with 2<k=<n, such that the set x,..., 1z is linearly dependent. This
dependence is expressed by an equation a x1+ - - - + axxx =0, with not all the
a’s equal to zero. Necessarily, then, a; # 0, for otherwise x1,. .., xx-; would
form a linearly dependent set. Consequently, xx=Bx1+- "+ B 1xx-1,
where B;=—ai/ar. This shows that x; is in the manifold spanned by
X1, ..., Xx—1. On the other hand, if we assume that some x is in the linear
manifold spanned by xi,...,xx-1, then an equation of the form x; =
Bix1+- - ++Br-1xx_1 shows that the set x;,...,xx is linearly dependent,
whence the same is true of theset x;,...,x,. O

It is convenient to say that x is a linear combination of x,, . . . , x, if itisin
the linear manifold spanned by these vectors.

Using the notion of linear dependence, we can define the concept of a
finite-dimensional vector space.

Definition. Let X be a vector space. Suppose there is some positive
integer n such that X contains a set of n vectors that are linearly independent,
while every set of n +1 vectors in X is linearly dependent. Then X is called



