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Preface

The complexity of computing is one of the most important problems in
computer science today. It represents an enormous challenge with which
we must cope if we are to understand the complex programs and machines
that we construct, and it is the principal motivation for the development of
a science of computing.

There have been many responses to the complexity -of computing,
especially in the general area of programming. Ours is a different response.
We explicitly measure the complexity of problems and then examine the
resources, such as space and time, that are needed under the best possible
conditions to compute functions of a given complexity on general-purpose
computers. The results we derive concerning this topic are in the form of
inequalities that state lower limits on possible space-time tradeoffs. The

~study of such tradeoffs is useful in developing intuition concerning the
cost-effective use of computers.

This book serves two principal purposes. It develops the tradeoff results
mentioned and gives an advanced treatment of important topics in switch-
ing and automata theory. In particular the book has two chapters
(Chapters 2 and 3) on the size and depth of logic circuits and the size of
formulas for Boolean functions. These chaptess contain numerous interest-
ing results, most of which are either very recent or are scattered throughout
the Russian literature. The Bibliography contains an extensive list of works
dealing with combinational complexity and related topics; these references
are set off by asterisks.

Chapters 4 and 5 develop a number of classical topics in the theories of
sequential machines and Turing machines, as well as some new results that
are used to derive the tradeoff inequalities. The classical topics include
reduced machines and regular expressions, universal Turing machines,
unsolvability of the halting problem, and partial-recursive functions. The
new topics include a product relation between the circuit size of a sequen-
tial machine, its computation time, and the circuit size of the function it is
used to compute, as well as computational work and program complexity.

Chapter 6 gives an extensive treatment of the principal components of
general-purpose computers, beginning with flip-flops and continuing
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through microprogramming to storage devices. These topics are examined
from a complexity point of view. A number of interesting circuit algo-
rithms are also given for arithmetic operations that have both small size
and small depth. This chapter can serve as a good introduction to the
orgdnization of general-purpose computers.

Chapter 7 develops the computational inequalities that state lower limits
on space-time tradeoffs. It also presents new results which show that the
lower limits can be approached for many problems. Under the assumption
that the lower limits can be achieved, we examine cost-effective operating
points on the space-time boundaries under several different cost functions.
We draw some interesting conclusions that are supportive of current
practice. , .

Chapter 8 presents a sound introduction to three topics in the design and
analysis of algorithms: sorting, matrix-multiplication and NP-complete
problems. We examine a number of (nonadaptive) sorting networks as well
as adaptive algorithms including Heapsort. The treatment of matrix multi-
plication includes the presentation of Strassen’s matrix multiplication
algorithm and a succinct derivation of the Fast Fourier transform algo-
rithm. In the third section of Chapter 8, we examine a number of
NP-complete problems as well as polynomial-time approximation algo-
rithms for some of them. These three topics provide important results and
examples of important problems that are used elsewhere in the book.

In the writing of this book I have been fortunate to have the assistance
of many friends. They include Howard Elliott, Yeshoshua Imber, Roy
Johnson, Edmund Lamagna, Joel Silverberg, Sowmitri Swamy, and
Charles Wade, who are or recently were graduate students at Brown
University and who have done a critical reading of most or much of the
book. Other friends have read substantial portions of the book and/or
have offered useful advice or input. They include Diedrich van Daalen,
Andy van Dam, Larry Harper, Daniel Lehman, Clem McGowan, Ron
Rivest, Bob Sedgewick, and Frances Yao. Many others have contributed,
including my students in recent years.

The writing of the book began during my sabbatical leave in 1973-1974,
which was spent in the Mathematics Department at the Technische
Hogeschool Eindhoven (THE), The Netherlands. For the opportunity to
spend my leave at this most hospitable institution in a most hospitable
country, I thank Edsger Dijkstra and Jack van Lint. To Prof. Dr. Lunbeck
I also express my thanks for a most attractive working environment.

The task of converting my jottings to typed form fell to E. E. F. M.
Baselmans-Weijers, Hanny van Dongen-van Nisselrooij, Marése van den
Hurk, and H. K. van der Putten-Bosscher at THE, and to Linda and
Sharon Trevitt, Joyce Oliver, and Claire Crockett at Brown. I give them
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my sincere thanks for their kind cooperation, speedy service, and terrific
copy. My thanks are also due S. Lowes for her valuable help in chasing
down references.

To Brown University, which supported a portion of my sabbatical leave
as well as much of my time since then, and to the John Simon Guggenheim
Memorial Foundation and the Netherlands_America Commission for
Edpcational Exchange (NACEE) which also supported a portion of my
sabbatical leave, I express my sincere appreciation. In particular, I wish to
mention Wobbina Kwast, Executive Director of' NACEE, who was most
effective in making the Fulbright-Hays Scholars feel at home in the
Netherlands. I also thank the National Science Foundation for the support
of my research which has found its way into my book.

And finally, I express my sincere gratitude to my wife, Patricia, who has -
been a true source of support and encouragement and who has given
generously of herself to facilitate the early completion of this book. I also
remember our children, Elizabeth and Kevin, for their patience.

JOHN E. SAVAGE

Providence, Rhode Island
August 1976
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Chapter 1

Introduction

. . . the world is waiting 10 hear the answers to such questions as

» What measurements exist?

o What efficiencies do they indicate?

® How can operations be improved?

® And ar what degree of predictability?

To me this is the essence of science and engineering in any field of endeacor.

WALTER M. CARLSON
Reflections on Ljubljana
CACM, October 1971.

As we succeed in broadening and deepening our knowledge—theoretical and
empirical—about computers, we shall discocer that in large part their behavior
is governed by simple general laws, that what appeared as complexity in the
computer program was, 10 a considerable extent, complexity of the environ-
ment to which the program was seeking to adapt its behatior.

HERBERT A. SiMON
The Sciences of the Artificial
MIT Press, 1968.

Many important computing systems and programs are sufficiently complex
that they tax our powers of comprehension, and yet we must attain some
satisfactory understanding of these systems and programs before we can be
reasonably confident that we are making efficient use of them. This book
explicitly recognizes the complexity of computing and attempts to respond
to the first question raised by Walter Carlson in the manner suggested by
Herbert Simon, namely. by moving to the proper level of abstraction. At
this level we examine computing systems and programs in terms of a few

1



2 Introduction
macroscopic parameters such as space and time, and we make an effort to
establish the fundamental relationships that exist between these parame-
ters. For this purpose, we examine in detail a number of analytical tools

that have a great deal of interest in their own right as well as for the role
they play in the development of this new level of understanding. '

1.1. COMPUTER SCIENCE AS A SCIENCE OF THE ARTIFICIAL

The handiwork of man, the artificial, is evident everywhere in our daily
lives. It is seen in our clothing, the temperature of the air we breathe, the
social and economic systems in which we participate, and in the composi-
tion of this book. Some of our artificial systems are fairly easy to
understand and/or are not deserving of detailed analysis. Others, in
,particular computer systems and programs, have such complexity and
economic importance that they must be subjected to close analysxs and
comprehended at each of several levels.

Our purpose in this book is to lay the groundwork for such analysis and
comprehension. But are we not doomed to failure? Isn’t it impossible to
develop a science of the artificial? These are questions that have attracted
Herbert Simon in the context of management science, psychology, com-
puter systems, and engineering education, and he offers convincing argu-
ments that they will be settled in the negative. Speaking of natural science
he says (Simon, 1969)

The central task of a natural science is to make the wonderful commonplace:
to show that complexity, correctly viewed, is only a mask for simplicity.

Should that not also be the objective of a science of the artificial?

If the need to understand complex man-made systems exists, where do
we begin? Simon (1969) suggests an answer in his definition of an artifact,
a man-made object or system:

An artifact can be thought of as a meeting point—an “interface” in today’s
terms—between an inner environment, the substance and organization of the
artifact itself, and an outer environment, the surroundings in which it operates.

Thus, the place to look for such an understanding is at the interface, at the
point where the inner and outer environment meet, the point at which the
stated goals of the system meet the internal constraints set by the inner
environment. .

In computing systems we suggest that one. important interface is the
.point at which a computer program meets the physical computer. Here the
physical limitations on space, time, and the capabilities of a central
processor must live with the objective of the program, namely, to compute
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a specified function or complete some specified task. This is a profitable
point at which to study programs and computers, as we see in Chapter 7. .

But let us challenge this hypothesis in several ways before we accept it ds
a reasonable approach to the understanding of complex computer systems.
We ask whether the multiplicity of computer organizations (Bell and
Newell, 1971, have identified more than 1000 different such organizations)
precludes the development of knowledge that is useful in studying the
majority of these organizations. Despite the differentiation that has been
observed in the above-mentioned taxonomy, there is a surprising degree of -
commonality among computer systems, and they can be grouped into a
small number of classes of like systems. Thus, the interface is less complex
than it would seem from this point of view. Then there is complexity in
computer programs. Here we have learned recently (Dahl et al., 1972) of
‘the importance of structured programs, programs, that observe a hierarchi-
cal structure. Such programs are constructed with a few simple rules, and
when approached this way they are much easier to design, understand,
prove correct, and make efficient. Programs organized or viewed in this
manner lose a great deal of their complexity at the: interface, where they
are characterized primarily by their goals. Again, it seems reasonable to
examine programs and computers at this level of abstraction. :

Given that it is reasonable to examine computing systems at the inter-
face between their inner and outer environments, we ask how we might
characterize the interface. A clue is found in the opinion voiced by Minsky
(1970) in his Turing lecture.

We have had misconceptions about the possible exchanges between time and
memory, tradeoffs between time and program complexity, software and
hardware, digital and analog circuits, serial and parallel computations, associa-
tive and addressed memory, and so on.

We are led to believe by this statement and personal programming experi- .
ence that a most natural characterization of the interface is in terms of
tradeoff relations. Minsky develops analogies with the natural sciences and
argues that “the recognition of ex..hangcs is often the conception of a
science, if quanufymg them is its birth.” We are almost ready to accept this
point of view, but further clarification is needed.

Computing systems are not only made by men, they are used by men.
Therefore, if the interface is.described by exchange relations of the
" equality variety, such as the conservation laws of physics, whatever in-
variants characterize the interface must be satisfied by all users. Because of
the variety in the human race, it is unlikely that any such equality relation
of any significance can hold. Thus, we are led to expect exchange relations
of the inequality variety, such as the second law of thermodynamics or the
Heisenberg -uncertainty principle. Here the interface is characterized by
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inequalities that define lower limits on exchanges of space for time. for
example, and explicitly permit users and programs to operate above the
lower limits, One expects that the limits embody the essentials of the
interface—they should be stated in terms of physical properties of com-
puters, such as space and time. and they should reflect the nature of the
program’s objective. Such exchange relations are derived in Chapter 7, and
the inner environment is reflected in the complexity of the program
objective as measured in two different ways.

The development of computational inequalities that define the interface
between programs and computers requires considerable preparation. We
develop models to represent machines and computations, and we define
and examine complexity measures. And finally we introduce some new
concepts in the process of deriving our inequalities. The development of
these ideas and tools is interesting in its own right and has occupied
scholars for decades. We outline these methods and concepts in succeeding
sections.

1.2. COMPUTATIONAL MODELS

To study programs and computers at their interface we must develop
models for computation. In this section, we give a brief introduction to the
three models we use and indicate the roles they play in modeling general-
purpose computers. The three models are logic circuits, sequential
machines, and Turing machines. We see that the first and last of these
models play a second role, namely, providing a basis for measuring the
complexity of functions.

A logic circuit, which we also call a combinational machine, is an
assemblage of logic elements each of which realizes a Boolean function.
(Precise definitions of circuits and functions are given in Chapter 2.) We
assume that the reader has some familiarity with logic circuits and with the
two-input Boolean functions of AND, OR, and NOT. (Readers not satisfy-
ing this condition can proceed directly to Chapter 2.) Denoting AND and
OR by * and +, respectively, in a circuit and NOT by a small circle, we
now illustrate the concept of a logic circuit by example. We do this for two
problems which are instances of important problems studied later.

Given an undirected graph on four nodes, we ask whether it contains a
subset of three nodes such that every pair of nodes in the subset is
connected by an edge. In a graph of n nodes, a subset of k nodes that
satisfies this property is called a k-clique. The “k-clique problem,” which is
to determine for arbitrary n and k < n whether an arbitrary graph on n
nodes has a k-clique, is very difficult and is an example of an NP-complete
problem (see Chapter 8). These problems are all either of exponential or
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polynomial running time, but their best known algorithms are exponential.
The Traveling Salesman problem and the 0-1 integer programming prob-
lem belong to this class.

The 3-clique problem on four nodes, as with the more general problem,
can be characterized by a Boolean function, a function on 0-1 valued
variables whose value is 0 or 1. Figure 1.2.1a shows a graph on four nodes
with six edges labeled y,, y,, . . . . ys. Here y; is a variable that has value |
if the indicated edge is present and is equal to 0 otherwise. Thus,
(V1» Y3 - - -, Yg) is a binary 6-tuple that characterizes a graph on four
nodes. Such a graph has a 3-clique if for one of the following sets of three
nodes. every pair of nodes is connected by an edge: {a, b, c}.
{b.c.d}, {c.d, a}. {d. a, b}. This condition holds for {a, b, c} if y, = y,
= ye = I, thatis, if y,*y,°ys = | where * denotes AND. Similar products
can be formed for each set of three nodes, and if f3_ (. y3. - ... ¥¢) is
Boolean function that has value 1 if and only if (y,y, ...,ye) char-
acterizes a graph with a 3-clique. f;__, can be realized as the OR of these
four products. Figure 1.2.16 shows a logic circuit that realizes this func-
tion. It is not known whether this circuit has a minimal number of
elements or how many elements are needed in general for the k-clique
problem.

f3—¢-l

Ya

¥s

Ye

Y y2 Y& Y2 Y3 Y5 Y3y Ys ya Ys
@ _ ®
Figure 1.2.1. Graph on four nodes and circuit for f;_ .
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As a second example of problem and circuit consider whether x =
(%1, x;) and y = (¥}, yy), X, ¥; € {0, 1}, denoting integers x| = x,+2 + x,
and |y| = y,* 2 + y, satisfy |x| > ). Let fcom(x, y) be the Boolean func-
tion defined as follows:

1>
fCOMP . y{ {0 ‘atherwise

This function is;ex'nn:xined closely in Section 2.4.3. We observe that

ifx;, >y, orx;=y,  andx,> y,

fm“' (x y) - [0 otherwise

Now if ~ denotes NOT in a formula, then x;*¥; is 1 when x; > y,, and
Xy °yy + X,¥, i8 1 when x, = y,. Thus, fo\p can be realized by the circuit
shown in Figure 1.2.2. We show in Section 2.4.3 that this circuit has a
minimal number of AND’s and OR’s.

We turn now to the second computational model, the sequential
machine. A sequential machine has memory and feedback, and at any one
point in time it is in one of several states. It is given an input, then makes a
state transition and produces an output. The successor state is determined

mfcow

X Yt

Xa Yo

Xy Y1 X1 N
Figure 1.22. Circuit for fooup-
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by the current state and input. Most sequential machines are clocked; that
is, state transitionis occur at time instants that are determined by a central
clock. However, the definition of a sequential machine is not dependent on
whethier ‘or not it is clocked. Sequential machines are the mt of
Chapter 4.

Shown in Figure 1.2.3 are the state diagrams for two sxmple seqmnal
machines. The states are numbered gy, 4,, 45, 3, and the inputs are ¢ and 1
for the first machine (@) and 0, 1,2 for the second.(b), The labels on
arrows between states indicate the state transitions that are msde on
individual inputs; thus in state g, each machine moves to g, on an input of
1. The first machine produces an output of 0 in each state except ¢, in
which an output of 1 is produced. If the initial state is gy the machine

“reaches this state only after receiving three 1’s'as input. Thus, it computes
the threshold function of threshold 3.

The second machine in Figure 1.2.3 has three input symbols. Apphca
tion of input 2 restores the machine to state g, which we take as the initial
state. Otherwise the state advances on receipt of a 1, retugging to g, on
receiving a multiple of four 1’s. Furthermore, the output associated with a
state is a pair a = (a;, a,) which is the subscript of the state written in
binary; that is, if |a] = a,2 + a,, then a is the output when the machine is
in state g This sequential machine adds modulo 4 and'can be used for
three consecutive cycles and reset to g, in order to realize a Full Adder, a
component in an adder for binary numbers (see Section 2.2)..

An important point to be made here is that sequential machines com-
pute functions, just as do logic circuits. However, since sequential

m'u.s. Two sequential machines.
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machines use their memory to reuse their logic circuitry. they can realize
functions with less circuitry than a no-memory machine but at the expense
of time. This observation, which is elevated to the level of a theorem in
Chapter 4. is one basis for the derivation of computational inequalities.

General-purpose computers come in many sizes and shapes, as indicated
by the preceding. Nonetheless, they typically have the principal component
shown in Figure 1.2.4. This consists of a central processing unit (CPU) and
a random-access memory (RAM). the latter being a device holding an
array of indexed words for which each word is accessible in one unit of
time (the cycle of the RAM) by specifying its index or address. The CPU
can address the RAM and store or fetch a word from it. It also executes
instructions fetched from the RAM and has access to an outside world.
The CPU typically can execute arithmetic operations and logical opera-
tions on words such as tests on the sign of a number. comparisons of
numbers. and so forth. These operations are implemented in logic circuits,
and the overall operation of the CPU and RAM can be modeled quite well
as a pair of sequential machines. The component parts and functions of
general-purpose computers are examined in considerable detail in Chapter
6.

> i RAM Figure 1.2.4. Model of a general-purpose
computer.

Our third computational model is the Turing machine. This consists of a
Control, which is a sequential machine. and one or more potentially
infinite tapes the heads of which are driven by the Control. It is not an
especially good model for general-purpose computers, but it is a classical
computational model that explicitly permits unlimited storage. In terms of
the functions it can compute, no more general model has been found and
yet it cannot solve some easily described problems. The Turing machine,
which is described in Chapter 5. provides a complexity measure that is a
second basis for the derivation of computational inequalities.

1.3. COMPLEXITY MEASURES

We make use of two basic types of complexity measures, one related to
the size and depth of logic circuits, and another that is the length of a



