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PREFACE

It is unlikely that this book would have been written 100 years ago. Even though there
was a considerable amount of modeling going on at the time and the concept of signals
was well understood, invariably the models that were used to describe systems tended to be
simplified (usually assuming a linear response mechanism), with deterministic inputs.
Systems were often considered in isolation, and the inter-relationships between them were
ignored. Typically, the solutions to these idealized problems were highly mathematical and
of limited value, but little else was possible at the time. However, since system linearity
and deterministic signals are rather unrealistic restrictions, in this text we shall strive for
more. The basic reason that we can accomplish more nowadays is that we have special help
from the digital computer. This wonderful machine enables us to solve complicated
problems quickly and accurately with a reasonable amount of precision.

For instance, consider a fairly elementary view of the so-called carbon cycle with the
causal diagram shown on the next page. Every child in school knows the importance of
this cycle of life and understands it at the conceptual level. However, “the devil is in the
details”, as they say. Without a rigorous understanding of the quantitative (mathematical)
stimulus/response relationships, it will be impossible to actually use this system in any
practical sense. For instance, is global warming a fact or a fiction? Only accurate modeling
followed by realistic simulation will be able to answer that question.

It is evident from the diagram that animal respiration, plant respiration, and plant and
animal decay all contribute to the carbon dioxide in the atmosphere. Photosynthesis affects
the number of plants, which in turn affects the number of animals. Clearly, there are
feedback loops, so that as one increases, the other decreases, which affects the first, and so
on. Thus, even a qualitative model seems meaningful and might even lead to a degree of
understanding at a superficial level of analysis. However, the apparent simplicity of the
diagram is misleading. It is rare that the input—output relationship is simple, and usually
each signal has a set of difference or differential equations that model the behavior. Also,
the system input is usually non-deterministic, so it must be described by a random process.
Even so, if these were linear relationships, there is a great body of theory by which closed-
form mathematical solutions could, in principle, be derived.

We should be so lucky! Realistic systems are usually nonlinear, and realistic signals
are noisy. Engineered systems especially are often discrete rather than continuous. They
are often sampled so that time itself is discrete or mixed, leading to a system with multiple
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time bases. While this reality is nothing new and people have known this for some time, it
is only recently that the computer could be employed to the degree necessary to perform
the required simulations. This allows us to achieve realistic modeling so that predictable
simulations can be performed to analyze existing systems and engineer new ones to a
degree that classical theory was incapable of.

It is the philosophy of this text that no specific software package be espoused or used.
The idea is that students should be developers new tools rather than simply users of
existing ones. All efforts are aimed at understanding of first principles rather than simply
finding an answer. The use of a Basic-like pseudocode affords straightforward implemen-
tation of the many procedures and algorithms given throughout the text using any standard
procedural language such as C or Basic. Also, all algorithms are given in detail and
operational programs are available on the book’s Website in Visual Basic.

This book forms the basis of a first course in System Modeling and Simulation in
which the principles of time-driven and event-driven models are both emphasized. It is
suitable for the standard senior/first-year graduate course in simulation and modeling that
is popular in so many modern university science and engineering programs. There is ample
material for either a single-semester course of 4 credits emphasizing simulation and
modeling techniques or two 3-credit courses where the text is supplemented with
methodological material. If two semesters are available, a major project integrating the
key course concepts is especially effective. If less time is available, it will likely be that a
choice is necessary — either event-driven or time-driven models. An effective 3-credit
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course stressing event-driven models can be formed by using Chapter 1, the first half of
Chapter 3, and Chapters 7-9, along with methodological issues and a project. If time-
driven models are to be emphasized, Chapters 1-6 and 10 will handle both deterministic
and non-deterministic input signals. If it is possible to ignore stochastic signals and Petri
nets, a course in both time-driven and event-driven models is possible by using Chapters |
and 2, the first half of Chapter 3, Chapter 4, and Chapters 8-10.
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Describing Systems

1.1

THE NATURE OF SYSTEMS

The word “system” is one that everyone claims to understand — whether it is a
physiologist examining the human circulatory system, an engineer designing a transporta-
tion system, or a pundant playing the political system. All claim to know what systems are,
how they work, and how to explain their comer of life. Unfortunately, the term system
often means different things to different people, and this results in confusion and problems.
Still there are commonalities. People who are “system thinkers” usually expect that
systems are (1) based on a set of cause—effect relationships that can be (2) decomposed
into subsystems and (3) applied over a restricted application domain. Each of these three
expectations require some explanation.

Causes in systems nomenclature are usually referred to as inputs, and effects as
outputs. The system approach assumes that all observed outputs are functions only of the
system inputs. In practice, this is too strong a statement, since a ubiquitous background
noise is often present as well. This, combined with the fact that we rarely, if ever, know
everything about any system, means that the observed output is more often a function of
the inputs and so-called white noise. From a scientific point of view, this means that there
is always more to discover. From an engineering point of view, this means that proposed
designs need to rely on models that are less than ideal. Whether the system model is
adequate depends on its function, Regardless of this, any model is rarely perfect in the
sense of exactness.

There are two basic raeans by which systems are designed: top-down and bottom-up.
In top-down design, one begins with highly abstract modules and progressively decom-
poses these down to an atomic level. Just the opposite occurs in bottom-up design. Here
the designer begins with indivisible atoms and builds ever more abstract structures until
the entire system is defined. Regardless of the approach, the abstract structures encapsulate
lower-level modules. Of course there is an underlying philosophical problem here. Do
atomic elements really exist or are we doomed to forever incorporate white background
noise into our models and call them good enough? At a practical level, this presents no
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problem, but in the quest for total understanding no atomic-level decomposition for any
physically real system has ever been achieved!

The power of the systems approach and its wide acceptance are due primarily to the
fact that it works. Engineering practice, combined with the large number of mathematically
powerful tools, has made it a mainstay of science, commerce, and (many believe) western
culture in general. Unfortunately, this need for practical results comes at a price. The price
is that universal truth, just like atomic truth, is not achievable. There is always a restricted
range or zone over which the system model is functional, while outside this application
domain the model fails. For instance, even the most elegant model of a human being’s
circulatory system is doomed to failure after death. Similarly, a control system in an
automobile going at 25 miles per hour is going to perform differently than one going at
100 miles per hour. This problem can be solved by treating each zone separately. Still there
is a continuity problem at the zone interfaces, and, in principle, there needs to be an infinite
number of zones. Again, good results make for acceptance, even though there is no
universal theory.

Therefore, we shall start at the beginning, and at the fundamental question about just
what constitutes a system. In forming a definition, it is first necessary to realize that
systems are human creations. Nature is actually monolithic, and it is we, as human beings,
who either view various natural components as systems or design our own mechanisms to
be engineered systems. We usually view a system as a “black box”, as illustrated in Figure
1.1. It is apparent from this diagram that a system is an entity completely isolated from its
environment except for an entry point called the inpur and an exit point called the output.
More specifically, we list the following system properties.

P1. All environmental influences on a system can be reduced to a vector of m real
variables that vary with time, x(¢) = [x;(¢), ..., x,,(1)]. In general, x(?) is called the
input and the components x,(f) are input signals.

P2. All system effects can be summarized by a vector of n real variables that vary
with time, z{t) = [z,(¢), ....z,(?)]. In general, z(¢) is called the output and the
components z;(f) are output signals.

P3. If the output signals are algebraic functions of only the current input, the system
is said to be of zeroth order, since there can be no system dynamics. Accordingly,
there is a state vector y(¢) = [¥,(?), ..., ,(+)], and the system can be written as

System

U]

environment

FIGURE 1.1 System block diagram.
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two algebraic equations involving the input, state, and output:

W) = f(x()), (L1)

z(t) = (), (1)), '
for suitable functions f; and f,. Since the state y(¢f) is given explicitly, an
equivalent algebraic input-output relationship can be found. That is, for a suitable
function g,

z(t) = L(x(0), 1(x(1))) = g(x(1)). (1.2)

If the input signal depends dynamically on the output, there must also be system
memory. For instance, suppose that the system samples a signal every
t=0,1,2,... seconds and that the output z(f) depends on input x(r — 1). It
follows that there must be two memory elements present in order to recall
x(t — 1) and x(¢ — 2) as needed. Each such implied memory element increases the
number of system state variables by one. Thus, the state and output equations
comparable to Equations (1.1) and (1.2) are dynamic in that f; and f; now depend
on time delays, advances, derivatives and integrals. This is illustrated diagram-
matically in Figure 1.2.

output

x(f)

’ z(f)

A

state

)

FIGURE 1.2 Feedback system.
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V(0 V(0

O=RR, Vs

FIGURE 1.3  Electrical circuit as a SISO system, Example 1.1.

EXAMPLE 1.1

Consider the electrical resistive network shown in Figure 1.3, where the system is
driven by an external voltage source v¢(¢). The output is taken as the voltage vg(?)
across the second resistor R,.

Since there is a Single Input and a Single Output, this system is called SISO.
The input—output identification with physical variables gives

x(1) = vg(?),
1) = valt).

Since the network is a simple voltage divider circuit, the input—output relationship
is clearly not dynamic, and is therefore of order zero:

R,
Ry +Ry

(1.3)

z(t) = x(2). (1.4)
In order to find the state and output equations, it is first necessary to define the
state variable. For instance, one might simply choose the state to be the output,
wt) = z(¢). Or, choosing the current as the state variable, i.e., y(f) = i(f), the state
equation is y(r) = x(¢)/(R; + R,) and the output equation is z(¢f) = R,(¢).
Clearly, the state is not unique, and it is therefore usually chosen to be
intuitively meaningful to the problem at hand. O

EXAMPLE 1.2

Consider the resistor—capacitor network shown in Figure 1.4. Since the capacitor
is an energy storage element, the equations describing the system are dynamic.
As in Example 1.1, let us take the input to be the source voltage vs(f) and the
output as the voltage across the capacitor, v-(7). Thus, Equations (1.3) still hold.
Also, elementary physics gives RCdv,/dt + ve = vg. By defining the state to be
the output, the state and output relationships corresponding to Equations (1.1) are

50) = o) = YO,
2(8) = y(0).

(1.5)
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I (o

FIGURE 1.4 Electrical RC circuit as a first-order SISO system.

As will be customary throughout this text, dotted variables denote time deriva-
tives. Thus,

d d? d
Y = — : y = —= e (n) = - .
y=ogp0, 3=o50, o YT =0 O

Electrical circuits form wonderful systems in the technical sense, since their voltage-
current effects are confined to the wire and components carrying the charge. The effects of
electrical and magnetic radiation on the environment can often be ignored, and all system
properties are satisfied. However, we must be careful! Current traveling through a wire
does affect the environment, especially at high frequencies. This is the basis of antenna
operation. Accordingly, a new model would need to be made. Again, the input—output
signals are based on abstractions over a certain range of operations.

One of the most popular system applications is that of control. Here we wish to cause
a subsystem, which we call a plant, to behave in some prescribed manner. In order to do
this, we design a controiler subsystem to interpret desirable goals in the form of a
reference signal into plant inputs. This construction, shown in Figure 1.5, is called an
open-loop control system.

Of course, there is usually more input to the plant than just that provided by the
controller. Environmental influences in the form of noise or a more overt signal usually
cause the output to deviate from the desired response. In order to counteract this, an
explicit feedback loop is cften used so that the controller can make decisions on the basis
of the reference input and the actual state of the plant. This situation, shown in Figure 1.6,
is called a feedback control or closed-loop control system.

The design of feedback control systems is a major engineering activity and is a
discipline in its own right. Therefore, we leave this to control engineers so that we can
concentrate on the activity at hand: modeling and simulating system behavior. Actually, we

goals response
x{t) z(®)

Controller —

FIGURE 1.5 An open-lcop control system.
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disturbance
u,(t)

goails response
X0 : z(h

—

Controller

FIGURE 1.6 A closed-loop control system.

will still need to analyze control systems, but we will usually just assume that others have
already designed the controllers.

The electrical circuit systems described in Examples 1.1 and 1.2 are cases of
continuous time-driven models. Time-driven models are those in which the input is
specified for all values of time. In this specific case, time ¢ is continuous since the
differential equation can be solved to give an explicit expression for the output:

1 1
velt) = velty) + —J vs()eTVRE gz, 1>, (1.6)
RC/,

Where v.(f)is the initial voltage accross the capacitor at time ¢ = #. Thus, as time
“marches on”, successive output values can be found by simply applying Equation (1.6).

In many systems, time actually seems to march as if to a drum; system events occur
only at regular time intervals. In these so-called discrete-time-based systems, the only
times of interest are ¢, = #, + hk for k = 0, 1, .... As k takes on successive non-negative
integer values, #, begins at initial time ¢, and the system signal remains unchanged until 4
units later, when the next drum beat occurs. The constant length of the time interval
tr1 — t = h is the step size of the sampling interval.

The input signal at the critical event times is now x(z,) = x(¢, + #k). However, for
convenience, we write this as x(#;) = x(k), in which the functional form of the function x is
not the same. Even so, we consider the variables ¢ and & as meaning “continuous time”
and “discrete time”, respectively. The context should remove any ambiguity.

EXAMPLE 1.3

Consider a continuous signal x(¢) = cos(nt), which is defined only at discrete
times ¢, =3 +%k. Clearly the interval length is 4 :% and the initial time is
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tO = 3 AlSO,
x(fy) = cos[r(3 + 1 k)]
= — cos(} nk)
~ {o, k = odd, wn
Tl (=D®D2 0k = even. '
Thus, we write
0, k = odd,
x(k) = [ (—D**D2  — even, (1.8)

and observe the significant differences between the discrete form of x(k) given in
Equation (1.8) and the original continuous form x(¢) = cos(nt). O

EXAMPLE 1.4

Consider a factory conveyor system in which boxes arrive at the rate of one box
each 10 seconds. Each box is one of the following weights: 5, 10, or 15kg.
However, there are twice as many 5 kg boxes and 15 kg boxes as 10kg boxes. A
graphic of this system is given in Figure 1.7. How do we model and simulate this?

Solution
From the description, the weight distribution of the boxes is

w PV = w]
5 0.4
10 0.2
15 0.4
1.0
conveyor
B, B, : B, g B,

arrived boxes

incoming boxes

FIGURE 1.7 A deterministic conveyor system, Example 1.4.
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where W is a “weight” random variable that can take on one of the three discrete
values W € {5, 10, 15}. The notation Pr{#’ = w] is read “the probability that the
random variable # is w”. The set {5, 10, 15} is called the sample space of W, and
is the set of all possible weights.

According to the description, these boxes arrive every 10 seconds, so
t = 10k gives the continuous time measured in successive k-values, assuming
the initial time is zero. However, how do we describe the system output? The
problem statement was rather vague on this point. Should it be the number of
boxes that have arrived up to time ¢? Perhaps, but this is rather uninteresting.
Figure 1.8 graphs N(f) = number of boxes that have arrived up to and including
time ¢ as a function of time ¢.

A more interesting problem would be the weight of the boxes as they arrive.
Unlike N(7), the weight is a non-deterministic variable, and we can only hope to
simulate the behavior of this variable W (k) = weight of the kth event. This can be
accomplished by using the RND function, which is a hypothetical random
number generator that provides uniformly random distributed variates such that

A
N(D)
3 -t o¢—0
]
]
|
1
p SR o—0
1
|
|
|
. o
[
]
|
| t
A | | | .
® 2% | i i >
10 20 30 40

FIGURE 1.8 State N(¢) for constant inter-arrival times.




