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Chapter 1
AILGEBRAIC
REVIEW

IN THiS CHAPTER:

Exponents

Polynomials

Linear and Quadratic Equations
Simultaneous Equations
Functions

Graphs and Lines

SN

Exponents

If n is a positive integer, then the expression x” means that x is multiplied
by itself n times. x is the base, n is the exponent, and the expression x” is
called the n** power of x. By definition, x° = 1 for any nonzero number x.
09 is undefined. Other powers can be found by using the following rules
of exponents:

a a a
2. =yt 5. | 2] =&
X B4 y
b 1
3. (x%) =x® 6. —=x"¢
(x) =
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7 \/;=x”2 9. by =yt =(x1/b)“
8. Yx=x 10. x@P = —a],b
X
Polynomials

For an expression like 5x2y> we say that 5 is the coefficient, x and y are
variables, and the expression is called a monomial. A polynomial is made
by adding and subtracting monomials, each of which is then called a term
of the polynomial. Terms with the exact same variables and powers are
called like terms.

Remember

When adding or subtracting polyno-
mials, you can combine like terms by
adding or subtracting their coeffi-
cients but you cannot combine unlike
terms.

In multiplying two polynomials, each term in the first polynomial
must be multiplied by each term in the second. Then, all these products
can be collected up and like terms can be combined.

Example 1.1

(2x +3y) (8x—5y—7z) =16x* - 10xy — 14xz + 24 xy — 15y2 —2lyz
=16x% + l4xy—14xz—-2lyz — 15y2
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Linear and Quadratic Equations

An equation is a mathematical statement equating two algebraic expres-
sions. If the variable x is only raised to the first power, then the equation
is a linear equation in x. If x is only raised to the first and second powers,
then the equation is a quadratic equation in x.

A linear equation is solved by moving all terms containing the vari-
able to the left-hand side of the equation, moving all other terms to the
right-hand side, then dividing by the coefficient of the variable.

Example 1.2

X=Xl o X143 o 05x24 o> x=—-g0
4 5 4 s .05

A quadratic equation can be arranged to the form ax?>+ bx + ¢ =0. If
a is non-zero, then we obtain the two possible solutions for x by using the
quadratic formula:

_ ~bt\b? —4ac

X
2a
Example 1.3
5x2-55x+140=0 = a=>5,b=-55c=140
L (59 £4(=55) ~ 4(5)140) _ 55%15
2(5) 10
35415 o U555,
10 10

Simultaneous Equations

A system of equations is a collection of equations that are supposed to be
true simultaneously. If it is impossible for the equations to all be true, then
the system is called inconsistent. If one of the equations can be made by
adding/subtracting some of the other equations together, then we say that
the equations are dependent. If neither of these conditions arises (so that
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the system is consistent and independent) and if the number of equations
is equal to the number of variables, then the system will have exactly one
solution.

The substitution method for solving a system has four steps: 1. Solve
one of the equations for any of its variables; 2. Substitute that value of
that variable for every occurrence of that variable in the remaining equa-
tions; 3. Repeat the first two steps until you an equation that has only one
variable in it, so you obtain a numerical value for that variable; 4. Find
the value of the remaining variables by substituting back through your
other equations.

Example 1.4

Using the substitution method on the system:
{ 8x—3y=7 }
—x+7y=19
1. Solve the second equation for x.
-X+Ty=19=x=Ty-19
2. Substitute this expression for x into the first equation.
B(7y—19)~3y=7= 53y =159
3. Solve this equation for y.
y=159/53=3
4. Substitute back through the second equation, and solve.
~x+7(3)=19=>x=21-19=2
The solution is (2,3).

The elimination method for solving a system is usually faster than
the substitution method: 1. We multiply two of our equations by differ-
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ent numbers, in order to make the coefficients for one of the variables
match. 2. When we subtract the equations, we obtain a new equation that
does not have as many variables. We eventually reduce the number of
variables to one, and finish by using steps 3 and 4 from the substitution
method.

Example 1.5

Using the elimination method on the system:
8x—-3y=7
—-x+7y=19

1. Multiply the first equation by 1 and the second by —8, in order
to make the coefficients on x match each other.

{ 8x—-3y=7 }
8x —56y=-152
2. Subtract the second equation from the first.
53y =159
3. Solve this equation for y. -
y=159/53=3

4. Substitute back through the second equation, and solve.

§

WS MO LT el

—x+7(3)= 1% = x =21 — 19 —RGIFT OF
! [HE ASIA FOUNDATION

o . DISTRIBUTED BY
The solution is (2,3). 1 SHANGHS INTERNAT!GMAL STUDIES

g DINRUE AT LI ARY
. A I
Functions | 3 % B s o DL % ‘»’,--.-f', r{ A

& b 5*5\ A :'~ * ka) s o A
A function on the variable x is a rul.e.thaLassxgn&m each val u& xa. .

unique numerical value f(x). x is called the argument of the function, and
f(x) is called the value of the function at x. The domain of f refers to the
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set of all x where the function can meaningfully be applied; the range is
the set of f(x) values that result. The following types of functions occur
frequently in economics.

Linear function.

fX)=mx+b

Quadratic function.
fxX)=ax>+bx+c
Polynomial function of degree n:
fW=ax"+a,  x""'+ - +a,
(where # is a nonnegative integer, and a,, is not 0)
Rational function:
g(x)

f(x):h—(xs

(where g(x) and h(x) are both polynomials)
Power function:
f(x) = ax"

(where #n is any real number)

Graphs and Lines

In graphing a function y = f(x), we usually put the argument x on the hor-
izontal axis and call it the independent variable. y is put on the vertical
axis and is called the dependent variable. (In some contexts economists
will put the independent variable on the vertical axis, and it is always best
to clarify which variable is regarded as independent.)

The graph of linear equation is a straight line. The slope measures
the ratio Ay/Ax, where Ay is the change in y and Ax is the change in x,
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and indicates the direction and steepness of the line. A positively sloped
line moves up from left to right; a negatively sloped line moves down.
The greater the absolute value of the slope, the steeper the line. A hori-
zontal line has slope O; the slope of a vertical line is not defined but we
will frequently say that it has infirite slope. The intercept of a line is the
value f(0), which is the value when the graph crosses the y-axis. The x-
intercept of a line is the value of x that makes f(x) = O true.

We can graph a linear function by finding any two points on the line
and connecting them as in Figure 1-1. If the line is in slope-intercept form
y =mx + b, then we will usually use (0,b) as one of the two points. The
second point can be chosen by plugging in any value of x, or by noticing
that (—b/m,0) is the location of the x-intercept.

\\
3 4 5 6 7 8 9 1011 12 X
4] I N

EEEEE

Figure 1-1. The graph of the function f(x) =-1/4 x + 3
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EcoNomic
APPLICATIONS OF
GRAPHS AND
EQUATIONS

IN THis CHAPTER:

Isocost Lines

Supply and Demand Analysis
Income Determination Models
IS-LM Analysis

Solved Problems

L N NI R N

Isocost Lines

If the expenditures of a company must be di-
vided between costs for two different compo-
nents x and y with respective prices p, and p ,
then we can write E=p x+p_y.Anisocost line
(or budget line) shows all the choices that the
company can make with a particular level of
expenditure. £ and the individual prices are
held constant; only the different combinations
of (x.y) inputs are allowed to change. The line

8
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can be graphed by plotting and connecting the intercepts (0,£/p ) and
(E/p,0). Its slope is —p_/p.. ’

If any of expenditure or price parameters are changed, the isocost
line may shift or change slope. An increase in the expenditure level E will
cause the line to shift to the right; it will be parallel to the old line because
the slope —p_/p_ is unchanged. A change in the cost of component y only
will affect the y-intercept, but not the x-intercept.

Supply and Demand Analysis

Market curves show the production and consumption responses to the
price level P of a commodity—the supply curve expresses the suppliers’
production level Q_ as a function of P, and the demand curve expresses
the consumers’ desired consumption level O, as a function of P. Market
equilibrium (or market clearing) occurs where the market curves cross,
at a price where production equals consumption. This price can often be
found algebraically, by equating the supply and demand functions.

Income Determination Models

The equation for a four-sector economy equates national income Y to the
sum of consumption C, investment I, government expenditures G, and
trade surplus (X — Z) where X = exports and Z=1imports: Y =C+1+ G
+ (X — Z). Typically, at least one of the components on the right-hand side
(usually C) is given as a function of Y; the others may not be present in
the problem, or may be given as constants. By aggregating (adding up)
the formulas for the four components, the right-hand side can be graphed
as a function of Y.

Economic equilibrium occurs where this aggregate equals Y and can
be seen graphically as the point where the aggregate curve crosses the 45°
line drawn from the origin. Algebraically, this equilibrium income can be
found by setting the aggregate equal to ¥, and then solving for the value
of Y.

IS-LM Analysis

IS-LM analysis extends the income determination model to incorporate
money markets and the level of interest rates (represented by a new vari-
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able “”). The equation Y= C+ I+ G+ (X — Z) is still used for the com-
modities market, but now each component is allowed to be a function of
Y and/or i. Additionally, a second equation M_= M, + M, represents the
money markets, by equating the supply of money M_ with the sum of the
transaction-precautionary demand for money M, and the speculative de-
mand for money M,. In this new equation M_ is usually given as a con-
stant, while M, and MZ are allowed to be functlons of Y and/or 1.

The IS- schedule of the economy is the set of (Y,i) combinations lead-
ing to equilibrium in the commodities market. The LM-schedule is the set
of (¥,i) combinations leading to equilibrium in the money market. Eco-
nomic equilibrium occurs when both markets are in equilibrium simulta-
neously and can be seen graphically as the intersection of the IS and LM
curves. Algebraically, the equilibrium income and interest level can be
found by simultaneously solving the system formed by the IS equation
and the LM equation.

Solved Problems

Solved Problem 2.1 A company with a $120 budget can produce two
different goods x and y, with manufacture prices $3 and $5. Show (by
drawing two isocost lines on a single graph) the effect of (a) a 25% re-
duction in the budget, (b) a doubling in the price of x, (c) a 20% reduc-
tion in the price of y.

Solution: The original isocost line is 3x + Sy = 120, and can be graphed
by plotting the intercepts (40,0) and (0,24). This graph is shown as the
solid line in each graph of Figure 2-1. The new isocost lines are (a) 3x +
5y =90, (b) 6x + 5y = 120, (c) 3x + 4y = 120; these are plotted as dashed
lines in Figure 2-1.

Solved Problem 2.2 Find the equilibrium price and quantity for the one-
commodity market Q_=-45 + 8P, O ,=125-2P.

Solution: At equilibrium, 0.=0,-45+8P=125-2P = 10P = 170.
So P =17, and the equilibrium quantity is Q_= Q (17) =—45 +8(17) =91.

Solved Problem 2.3 Find the equilibrium conditions for the following
two-commodity market for beef B and chicken C: Q 5=82-3P, +P_,
Quc =92+2P, —4P, Q p =—5+15P,, Q . = -6+ 32P,.



