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General introduction

The microprocessor

Many major advances in human knowledge have resulted from the
cross-fertilisation of two different disciplines. One product of such a
union is the microprocessor, which represents the flowering both of
electronics and of computer science. :

The microprocessor brings a new dimension of freedom, capability
and power to both areas. The electronic engineer can now design control
and signal-processing systems of unparalleled reliability, speed and sim-
plicity, while the computer scientist can obtain as much computer
power as he needs at a small fraction of its previous cost.

The mixed parentage of the microprocessor gives it two entirely dif-
ferent aspects, each of which tells only part of the truth. An engineer
schooled in conventional electronics might think of it as the culmination
of a line of digital components starting with elementary logic gates, and
including registers, adders, arithmetic units and stores. ,This view is
correct as far as it goes, but fails to take into account the ‘computer’
" dimension of the microprocessor. An engineer who saw fhe device
solely as an electronic component would not be able to put™t.io effec-
tive use. : o

The other aspect of the microprocessor is seen by the computer
scientist. When he first reads a description, the computer scientist can
see no essential difference between the structure of. the microprocessor
and the large mainframes or minicomputers he has been using hitherto.
It has basically the same arrangement of store, arithmetic and control
units, and it is clear that all the programming techniques and tools
such as assemblers, editors and high-level languages are as applicable to
microprocessors as they are to conventional computers. The main
stumbling block to the computer scientist is that the microprocessor is
only a component, and to be of any use it must be built into a complete
system with other components. This sevétely practical point has so far
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2 General introduction .

prevented some computer scientists from taking a serious interest in
microprocessors.

It appears, then, that to make full use of microprocessors the system
designer must be grounded both in electronics and in computer science

subjects that traditionally cover different areas. Unlike computer
scientists, electronic engineers have shown a great deal of enthusiasm
- for the new development; but they have often encountered great diffi-
culties because of their.inexperience in the techniques of computer
science. To the computer specialist’s eye, engineers often painfully re-
invent methods that were fully understood 20 years ago.

The present writer is a computer scientist with some knowledge of
digital electronics. This book attempts to bridge the crevasse between
these two subjects, by starting from the side of the engineer, taking for
granted a basic knowledge of digital electronics and concentrating on
the computer-like aspects of microprocessors.

Hardwired and programmed systems
The basic feature that makes a microprocessor more than just a compo-

nent is its generality, and its ability to switch between several different
functions within a few microseconds.

Process

Controller

Figure 1.1



General introduction 3

Consider a digital controller for a chemical process (Figure 1.1).
Sensors S,, S; and S3 supply essential information about temperatures,
pressures, flow rates and so on. Actuators A, and A, control valve
settings and motor speeds so as to keep the process running at the right
conditions for the best yield. The controller may also double as a ‘safety
device’, shutting down the entire process or opening a relief valve if
one of the sensors reports a value that exceeds some predetermined
mean.

In the past, a controller of this type could well have been built using
traditional components such as relays or elementary logic gates. The
inputs would have been converted from analogue to digital form by
A/D converters, and the outputs would have been handled by D/A
converters whenever necessary. This type of construction is called
‘hardwired’, because the control function is totally embodied in the
components and their connections. A common feature of a hardwired
design is that every aspect of a specification is translated directly into
its own assembly of components. Thus a safety requirement involving
five inputs would be implemented by five connected relays or a five-
input logic network.

Today, the same control function can be provided by a micropro-
cessor. The controller still has the same connections to the system being
controlled, and the signals must still be converted to and from the
digital form; but the internal arrangement is now totally different.
Instead of many components each dedicated to a specific purpose, the
system has only a few parts; but they are configured so that they can
carry out all the necessary functions one after the other in sequence.
When the system has executed all the control functions once, it loops
back and executes them again, and so on continuously. Each control
function can be executed every few milliseconds, giving a clgse approxi-
mation to continuous control.

The information governing the control functions is stored as a series
of ‘instructions’ in a store attached to the control system. As soon as
it has finished executing any one function, the system fetches the
instructions governing the next function from this store. A typical set
of control instructions might carry the meaning:

. If temperature > 250° ring alarm

. If pressure > 50 kg/cm? ring alarm

. If flow > 102 litre/s close inlet valve one step
. If flow <98 litre/s open valve one step

W N -

19. Wait 2 seconds
20. Go back to step 1



4 General introduction

It should be noted that the actual form in which the instructions are
stored is considerably different from the one shown above; the inten-
tion, however, is the same. .

Figure 1.2 shows the internal structure of a control system based on
a microprocessor. A vital feature of this structure is that it is the same
for any controller. Different control functions can be obtained simply
by changing the instructions held in the store. In the limit a micropro-
cessor can implement any control function, mo matter how complex.

Store for -
instructions
Inputs Outputs
(digital) (digital)
‘ 1)
—— ' b —

General - purpoée
information-handling

—_— components : adders, -
registers, multiplexers, etc.

Figure 1.2

The only condition is that the function be capable of complete and un-
ambiguous definition.

The set of instructions that produces any control function is called a
‘program’. A microprocessor is therefore often referred to as a ‘pro-
grammed’ device, to distinguish it from one that is hardwired.

Some contrasting properties of hardwired and programmed devices

It is worth comparing hardwired and programmed systems, since they
differ in several important ways.

Complexity of control/
One measure of control function is its complexity — the number of in-

puts and outputs, the rules that relate them, and the number of excep-
tions. Some control functions, like automatic aircraft landing devices,
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are inherently complex and others can be made complex by providing
alternative courses of action if any part of the system should fail.

The overall size of a hardware system is directly connected to the
complexity of the control function. This fact forces a practical limit
to complexity, since a system that is too large will be difficult to test
and maintain, or even too bulky physically to fulfil its requirements.

.On the other hand the complexity of a microprocessor systemn can in
principle be increased indefinitely, simply by adding more instructions
to the program. There is practically no increase in size, or in the

" number of physical components.

Cost

Microprocessors now cost a negligible amount if bought in large quanti-
ties. They. normally need to be equipped with power supplies and with
other components such as stores; but even so, the component cost of a
small microprocessor system is competitive with all but the yery simp-
lest electromechanical devices. .
The design cost is a different matter. The most difficult part of
designing a microprocessor system is the correct specification of the
program. This needs relatively expensive equipment and some know-
ledge of computer science on the part of the design engineer. Further-
more, the need to leamn a new technique has made the design costs oft
many microprocessor systems seem very high, but this can be regarded
as an investment for the future. Nevertheless, it can still be argued that,
to produce a simple control system in small quantities, a traditional
hardwired approach is sometimes good economics.

Reliability

The reliability of a hardwired system depends on its size. Published
statistics for the failure rates of individual components, soldered and
wrapped joints can be used to calculate the ‘Mean Time Between Faults’
of any hardwired system. This figure can often be adjusted to any
desired value by using more reliable components, improving ventilation,
or duplicating or triplicating the whole system. This analysis assumes
that the basic design is right; but since the behaviour of each separate
control function can usually be checked independently, the assump-
tion is usually valid.

Superficially, a system based on a microprocessor can be analysed
in the same way. Since it has fewer components, it will appear far more
reliable than its hardwired counterpart; but this again assumes that the
design is correct. Here the assumption is dangerous, for most of the
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design in the system is in the controlling program, and it is far from
easy to ensure that a series of instructions will always do exactly what
they are intended to. There are two particular points to observe.

Firstly, mistakes in a program are errors in design. The failures they
cause cannot be guarded against by duplication of the system (since
both sets of equipment would make the same error at the same time),
and they always come without prior warning.

Secondly, programming is an activity fraught with psychologlcal
difficulty. It has been compared to compulsive gambling. Most people
are unreasoning optimists about their programs, and just as the gambler
‘knows’ that this time he has at last understood the mysterious forces
behind the ivory ball, and that he must win on the next spin, so the
programmer feels a moral certainty that his program is right. This
conviction continues even though error after error comes to light; the
programmer is always sure that every mistake is the last one. This
universal tendency makes it very difficult to adopt the pessimistic,
cynical viewpoint that alone can lead to programs that are genuinely
correct. In practice, many control systems are fitted with programs
that are only partially tested and riddled with mistakes. The accuracy
of the program is the greatest single factor in determining the relia-
bility of any microprocessor system. Methods of checking programs
and verifying their correctness will be discussed at length later.

A classification of microprocessors

The market for microprocessors has expanded rapidly, and many
different kinds are available.

Two important ways of making electronic circuitry are the ‘bipolar’
and ‘MOS’ technologies. Bipolar integrated circuits are about ten times
faster than those made with MOS, but each transistor takes more room
and dissipates more heat. This places a strict limit on the number of
transistors on a chip, and therefore on the complexity of the chipasa .
whole. Most bipolar microprocessors take the form of ‘bit slices’ —
components that can be put together in various ways to build powerful
computers. The application areas and design methods for bit slices are
somewhat specialised and entirely different from those associated with
MOS microprocessors, and will not be considered further here.

With MOS technology, one chip can contain enough components to
form a self-contained computer, albeit one that runs rather slower than
a minicomputer or ‘mainframe’ machine. Most existing microprocessors
are based on MOS.

Within this group, there is still a huge selection of devices. They
share a common basic architecture, but differ in speed, in the amount
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of information they can handle at any time, in the complexity of the
operations they actually do, in the way they are connected to the
external world, in their power-supply requirements, and in their
immunity to mechanical vibration and electrical noise. Other factors
that might affect the selection of a microprocessor for a particular task
are the number of manufacturers (to ensure continuity of supply) and
the provision of software aids. Perhaps the most important single point
is the degree to which the system design engineer is familiar with a
particular type of microprocessor; the sheer labour of learning about a
new family of microprocessors is so great that brand loyalty becomes
a virtue.

Summary

This introductory chapter has made the following points:

¢ Microprocessors have a very low cost, and are extremely flexible in
use. This combination offers many large application areas for exploi-
tation. ]

® Microprocessors can be used to implement control Tunctions of any
complexity.

® The reliability of a microprocessor system depends chiefly on the
accuracy of the controlling program. Correct programs are difficult
and expensive to design, ’



Representation of data

This and the next few chapters deal with the inteliectual and practical

tools that ghe designer of a microprocessor system will need. The reader

is advised to scan the material once for an overview — to look, as it

were, into the tool cupboard — and then to return to it later, when he
~ has begun work on an actual problem.

The binary system

Microprocessors are essentially devices for handling and processing
information. In a digital system information is represented by binary
digits, each of which can have only two possible values: 1 and O, (These
values often have other names, like ‘true and false’, ‘set and clear’, or
‘mark and space’. The actual names used are not important, so long as it
is understood that, for example, ‘1’, ‘true’, ‘set’ and ‘mark’ ullmean the
same thing.)

In most circumstances, binary digits (or ‘bits’) are not handled singly,
but in groups of fixed size called ‘bytes’ or ‘words’. Various micropro-
cessors have words of 4, 6, 8, 12 or 16 bits. However, eight bits is a use-
ful and common word size, and we shall assume it in our examples.

The bits in a computer word have no predetermined meaning. Their
significance always depends on the context, and is fully controlled by
the system designer. There are, however, four basic types of informa.
tion, each with its own conventions and methods of being handled:
Boolean information, numerical information, character codes, and
machine code.

Boolean information

Boolean information is the name used for data items that can have only
two possible values, such as ‘set’ or ‘clear’. On the input side, Boolean

8
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items may be derived from switch settings, relays or comparators. On
output, Boolean signals control lamps, alarms, and other devices with
simple ‘on/off’ characteristics.

Clearly, a Boolean data item can be mapped on to a single binary
digit. One possible coding is for ‘on’ to be represented by 1 and ‘off’
by 0.

" A word of eight binary digits can be used io contain up to eight
different independent Boolean data items. If the items are related to
one another (like the pushbuttons in a lift car) they are often packed
into a single word; but otherwise it is more convenient to give each
Boolean item a word to itself. By convention, the value is replicated, so
that ‘on’ is represented by 11111111, and ‘off” by 00000000.

Numerical information

Much of the data in any system is in the form of numbers. The values
can be derived from external sources through A/D converters, or they
can be generated internally whilst 2 program is being executed.

In a word with eight binary digits, there are 2® or 256 different
combinations of O’s and 1's. In principle, these combinations can be -
used to represent numbers in any arbitrary code whatsoever. In practical
terms, however, it is best to keep to some variant of the binary (radix
two) notation, because microprocessors are designed to do arithmetic
on this assumption.

The binary notation is a positional system, identical in principle to
the denary system used in everyday life, A denary number is implicitly
written with a radix of ten; it is understood that the various digits refer
to units, tens, hundreds, thousands, etc., which are all powers of ten.
Thus ‘1978’ is interpreted as:

1x10°+9x 10 +7x 10! +8x 10°

(The reader will remember that 10° = 1.) An important point about
the denary system is that it uses only ten different symbols: 0, 1, 2, 3,
4,5,6,7, 8 and 9. Numbers greater than nine are written using com-
binations of the basic symbols.

In the binary system, the radix is two, and the only symbols needed
are 0 and 1. A number like ‘10110’ is interpreted as: !

Ix2*+0x 22 +1x2* x 1x2'+0x 2°

which equals ‘twenty-two’. :

Binary numbers are in general about three times longer (in terms
of digits) than their decimal counterparts. The advantage of using
binary numbers within a computer is that arithmetic is very simple.
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Addition, for example, is governed by the table:

0+0=0
0+1=1
1+0=1
1+1=0,carry 1
The addition of two binary numbers cou'd be written as follows:
101101 45
10111 + 23 +
1000100 68

It is sometimes necessary to convert numbers between their denary
and binary forms. Conversion from denary is best made by repeatedly
dividing by two, and noting down the remainder each time. Finally the
remainder digits aré assembled, the first on the right and the last on the
left. For example, to convert 87 to binary, we put:

0) @ ® @

43 r1 21 11l 10 rti 5 10
2)87 2)43 W21 2)10

2 rl 1 r0 0 11

A 292 )|

- 87=1010111

To make the conversion the other way, it is easiest to use a table of
the powers.of two:

2= 1 2= 32
2= 2 2°= 64
22=4 27=128
22=8 2*°=256

2%=16 2°=512 etc.

The conversion is made by addihg up those powers of two represented
by 1’sin the binary number. For example:
1010111 =25 +2* +22 +2! +2° =64
16

Bl s
+

[}



Representation of data 11

These methods are suitable for humans, who normally think in the
denary system. For a being (or a machine) that normally worked in the
binary system the methods would be inverted, relying on division by
ten, and a table of powers of ten.

The binary system is used in a number of variants, three of which
will now be described.

Unsigned binary numbers

In this notation, numbers are represented in straightforward binary
code. The only difference is that each number always has a fixed
number of digits (eight in our examples). This implies that small num-
bers have leading zeros, and that there is a maximum size to the num-
bers that can be represented at all. For example:

0000001 1 = three

11111111 = two hundred and fifty-five (the largest number in an
eight-bit system)

The presence of the leading zeros matters very little, but programmers
must constantly be aware of the size limitation. Any calculation that
could give a result greater than this limit may simply go wrong unless
special precautions are used. Thus:

11111010 (250)
00001010 + (10)
(100000100

The carry from the most significant stage of the addition drops off the
end, leaving the (incorrect) answer 4. .

Binary coded decimal (‘BCD’)

If a microprocessor is controlling a display made up of decimal digits,
or reading decimal numbers from a keyboard, it is often convenient to
allow each eight-bit word to represent one decimal digit. The binary
code normally used for each digit is:

0 = 00000000 3 = 00000011
1 = 00000001 4 = 00000100
2 =00000010 5 = 00000101



12 Representation of data
6 = 00000110 8 = 00001000 .
7=00000111 9 = 00001001

This system has two advantages: conversion to the true decimal form is
trivial, and by using enough words (one for each digit) it is possible to
represent numbers of any size. On the other hand, BCD is wasteful of
space, and arithmetic is slow. The addition of two BCD digits is
governed by the rule:

I. Add the two numbers as if they were (simple) binary quantities.
2. Add the carry from the previous stage (if any).
3. If the result is greater than ten, then:

(a) subtract ten from the result,

(b) carry 1 to the next stage.

For example:
0011 3
0101 + {5+
1000 8
This is correct; but
1000 8
0ot - f 9+
10001 A\17
This exceeds ten, so 1010 (ten in binary) is subtracted:
~.10001
1010
111

giving 0111 (seven), and 1 is carried to the next stage.
In an eight-bit system, it is clearly posslble to ‘pack’ two BCD digits
into one word. For example, 10010111 in packed BCD means ‘97".
Sonie combinations of bits would imply ‘decimal digits’ greater than
nine, and are not permitted. Thus the elght -bit word ‘10101011’ would
be meaningless in packed BCD.

Signed binary numbers

In many applications it is impdrtant to be able to use signed numbers
- numbers that can have negative or positive values. Humans normally
use the sign-magnitude notation, where the absolute value of the
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1

number is preceded by its sign. This leads to complicated rules for the
addition and subtraction of signed numbers, such as:

To add two signed numbers a and b:

® [f the signs are the same, add the magnitudes and attach the
common sign.

® If the signs are different, then:
if the magnitude of @ is greater than the magnitude of b, sub-
tract b from @ and Aattach the sign of a; otherwise subtract a
from b and attach the sign of b.

The systein used in microprocessors is quite different and much sim-
pler. It is called the ‘two’s complement’ notation.

In the discussion on unsigned binary numbers, it was noted that,
where quantitie$ grew too large, carries were lost and the results of
addition were wrong. This was represented as a serious drawback; but
in the two’s complement notation the same feature is actually turned to
advantage. ,

One way of defining a negative number —n is to specify that it is the
-number that, when added to +n, will give zero. In a system with a
limited number of digits, every number has its negative. For example:

00000001
T+

(1)00000000

Here the carry is lost from the end, and the sum of the two numbers
being added is zero. Since the first number is +1, the second is evidently
- 1. Similar arguments can be used to show that:

11111110=-2
11110t = -3
11111100 = -4 etc.

With this representation, the addition and subtraction of Signed
numbers is trivially easy: no account at all need be taken of the sign'
For example, +7 + (- -4) gives:

00000111
11111100  +

(1)00000011 =+3

The one drawback of this system is its potential ambiguity; does
11111010 mean ‘250’ or *—-6'? The answer to this question is funda-
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mentally a matter of convention; but to arrive at a sensible rule we
make use of a circle diagram.

Consider a variable with integral (whole number) values. Each value
can be written down in a small circle, and the operation of addipg 1 can
be shown as an arrow. A mathematician wouild show part of the set of
integers as in Figure 2.1, it being understood (by the mathematician)
that the line of numbers extends to infinity in both directions.

Figure 2.1

\ 00000000
nnn

00000001

1111110 00000010

[ARRRRE)] 00000011

-Negative Positive
increments increments

10000001
10000000

Figuve 2.2



