

IBM PC:
DATA FILE PROGRAMMING

JERALD R. BROWN

Educational Consultant

LEROY FINKEL
San Carlos High School

Wiley IBM PC Series: Series Editor, Laurence Press, Ph.D.

A Wiley Press Book
JOHN WILEY & SONS, INC.
New York - Chichester - Brishane - Toronto - Singapore

Publisher: judy V. Wilson

Editor: Dianne Littwin

Managing Editor: Maria Colligan

Composition and Make-Up: Cobb/Dunlop, Inc.

Copyright © 1983, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by
Section 107 or 108 of the 1976 United States Copyright Act without the permis-
sion of the copyright owner is unlawful. Requests for permission or further
information should be addressed to the Permissions Department, John Wiley &
Somns, Inc.

Library of Congress Cataloging in Publication Data

Brown, Jerald, 1940-
IBM PC: data file programming.

(Wiley IBM PC series)

Includes index.

1. IBM Personal Computer—Programming. 2. File
organization (Computer science) I. Finkel, LeRoy.
II. Title. 1IL Title: LB.M. P.C. 1V. Series.
QA76.8.12594B76 1983 001.64'2 82-24849
ISBN 0-471-89717-5

Printed in the United States of America

83 84 10 9 8 7 6 5 4 3 2 1

How to Use This Book

When you use the self-instruction format in this book, you will be actively
involved in learning data file programming in BASIC. Most of the material is
presented in sections called frames, each of which teaches you something new or
provides practice. Each frame also gives you questions to answer or asks you to
write a program or program segment.

You will learn best if you actually write out the answers and try the programs
on your computer. The questions are carefully designed to call your attention to
important points in the examples and explanations, and to help you apply what
is being explained or demonstrated. We cannot urge you too strongly to really
“fill in the blanks” for rapid and accurate learning.

Each chapter begins with a list of objectives—what you will be able to do after
completing that chapter. At the end of each chapter is a self-test to provide
valuable practice.

The self-tests do triple duty. They can be used as a review of the material
covered in the chapter. Or you can read and work through a chapter, take a break,
- and save the self-test as a review before you begin the next chapter. The self-tests
also provide valuable practice, for maximum retention of the material learned.
Starting with the Chapter 4 Self-Test, you are asked to write programs that can be
used to either create data files or display the contents of data files. These data
files are then used by other programs in later chapters, so please don’t skip the
self-tests! At the end of the book is a final self-test to assess your overall
understanding of data file programming. You will find it easy, if you have
worked through this self-instruction format without skipping over the practice
programs.

Instructors will find this book to be an excellent text for intermediate or
advanced courses in BASIC programming at the high school and college levels,
as well as for computer center classes, university extension workshops, and
in-house instructional settings.

This book is designed to be used with a computer close at hand. What you
learn will be theoretical only until you actually sit down at a computer and apply
your knowledge “hands-on.” We strongly recommend that you and this book get
together with a computer! Learning data file programming in BASIC will be
easier and clearer if you have regular access to a computer so you can try the
examples and exercises, make your own modifications, and invent programs for
your own purposes. You are now ready to use data files in BASIC.

Preface

This text will teach you to program data files in BASIC. As a prerequisite to its
use, you should have already completed an introductory course or book in
BASIC programming and be able to read program listings and write simple
programs: This is not a book for the absolute novice in BASIC. You should
already be comfortable writing your own programs that use statements including
string variables, string functions, and arrays. We do start the book with a review
of statements that you already know, though we cover them in more depth and
show you new ways to use them.

The book is designed for use by readers who have little or no experience using
data files in BASIC (or elsewhere, for that matter). We take you slowly and
carefully through experiences that “teach by doing.” You will be asked to
complete many programs and program segments. By doing so, you will learn the
essentials and a lot more. If you already have data file experience, you can use
this book to learn about data files in more depth.

The particular data files explained in this text are for the BASIC language used
on the IBM Personal Computer (IBM PC) with one or two disk drives. The IBM PC
Disk Operating System (DQOS), Version 1.10, includes three versions of BASIC;
cassette, disk, and advanced. The book is also compatible with IBM’s new DOS
Version 2.0. We used the disk version to develop this book. Cassette BASIC users
can use only the files described in Chapters 4 and 5. Advanced BASIC users will
find that all our programs will also work using that version of BASIC. Another
popular version of BASIC called Microsoft BASIC-80 is also available for those
using the CPM Operating System on the IBM PC. The programs and procedures
described in this book will also work for those of you using that version of
BASIC. Data file programming in other versions of BASIC will be similar, but not
identical, to those taught in this book. You will find this book most useful when
used in conjunction with the appropriate reference materials for your computer,
including the manuals for BASIC, DOS, and the Guide to Operations.

Data files are used to store quantities of information that you may want to use
. now and later; for example, mailing addresses, numeric or statistical informa-
tion, or tax and bookkeeping data. The examples presented in this book will help
you use files for home applications, for home business applications, and for your
small business or profession. When you have completed this book, you will be
able to write your own programs, modify programs purchased from commercial
sources, and adapt programs using data files that you find in magazines and
other sources.

vii

PUT YOUR IBM PC TO WORK TODAY!

Buy the 5%4” disk at your favorite computer store, or order
from Wiley:

In the United States: John Wiley & Sons
1 Wiley Drive
Somerset, NJ 08873

In the United Kingdom John Wiley & Sons, Ltd.
and Europe: Baffins Lane, Chichester
Sussex PO 19 1UD UNITED KINGDOM

In Canada: John Wiley & Sons Canada, Ltd.
22 Worcester Road
Rexdale, Ontario M9W 1L1 CANADA

In Australia: Jacaranda Wiley, Ltd.
GPO Box 859
Brisbane, Queensland AUSTRALIA

Brown —IBM PC DATA FILES PROGRAM DISK 1-88906-7

| || || | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 2277, NEW YORK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

JOHN WILEY & SONS, Inc.
1 Wiley Drive
Somerset, N.J. 08873

Attn: IBM PC Data Files Program Disk

NOW AVAILABLE

All the powerful programs listed in this book will make your
IBM PC more effective than ever. The programs and subroutines to
set up, maintain, and modify data files can go to work for you today!

Save time and don’t risk introducing keyboarding errors into your
programs.

The IBM PC DATA FILES PROGRAM DISK is available at your
favorite computer store. Or use the handy order card below.

THE IBM PC DATA FILES PROGRAM DISK

Yes, I want to manage my data files better. Please send me
IBM PC DATA FILES PROGRAM DISK at $19.95 each.
1-88906-7 $19.95

copies of the

__ Payment enclosed (including state sales tax). ___ Bill me.
Wiley pays shipping and handling charges. ___ Bill my company.
__ Charge to my credit card: __ Visa __ Master Card

card Number []I CICC]

Expiration date Signature
Name Title
Company
Address
City State Zip Code
1-88906-7 263 Signature (Order invalid unless signed)

We normally ship within ten days. If payment accompanies your order and shipment
cannot be made within 90 days, payment will be refunded.

Contents

Chapter 1

Chapter 2

Chapter 3

How to Use This Book v
Preface vii

Writing BASIC Programs for Clarity,
Readability, and Logic 1

Introduction The BASIC Language The BASIC Language You
Should Use: Conservative Programming Writing Readable
Programs The Top-to-Bottom Organization REMARK
Statements GOTO Statements A Format for the Introductory
Module The Modules that Follow the Introduction

Subroutines Just for Looks: Spacing Other Techniques to
Enhance Looks and Readability Undoing It All to Save Space and
Speed Up Run Time Chapter 1 Self-Test

An Important Review of BASIC Statements 19

Introduction Variable Names ~String Variables READ-DATA
Assignment Statements Understanding INPUT, an Important
Assignment Statement The LINE INPUT Statement

Concatenation The IF ... THEN Statements IF ... THEN String
Comparisons and the ASCII Code The LEN Function Substring
Functions: Versatile Tools to Manipulate String Data String
Searches with INSTR Mult-Branching with ON . .. GOTO FOR
NEXT Statements Multiple Statement Lines Get to Know Your
IBM PC Chapter 2 Self-Test

Building Data Entry
and Error Checking Routines 61

Introduction Data Field Length Checking Data Entries for
Acceptable Length “Padding” Entries with Spaces to Correct Field
Lengths Stripping the Padding Spaces from Substrings in

Fields Checking Entries for No Response Replacement of Data
Items in a String with Defined Data Fields The VAL Function in
Data Entry Checks Using STR$ to Convert Values to

Strings Checking for Illegal Characters A Discussion of Data
Entry and Checking Procedures Chapter 3 Self-Test

ix

X IBM PC: DATA FILE PROGRAMMING

N

Chapter 4 Creating and Reading Back
Sequential Data Files 106

Introduction Data Storage on Disks Sequential Versus Random Ac-
cess Data Files Initializing Sequential Data Files: Opening the
File The Buffer Problem: Closing the File Placing Data into a Se-
quential Data File Using WRITE # or PRINT # Writing a
File Reading Data from a File Permanently Removing Files from
Disks Multiple File Operations in One Program Displaying One
Dataset at a Time from a File Chapter 4 Self-Test

Chapter 5 Sequential Data File Utility Programs 168

Making a Data File Copy Adding Data to the End of a Sequential
File Changing Data in a File Editing, Deleting, and Inserting Se-
quential File Data Merging the Contents of Two Sequential
Files Problems with Sequential Data Files A Letter-Writing
Program Chapter 5 Self-Test

Chapter 6 Random Access Data Files 236

Introduction What Is a Random Access File? Initializing Random
Access Files Buffer Fields Simple READ and WRITE Operations to
Random Access Files with String Data Adding Data to Random Ac-
cess Files Using Random Access Files with Numeric Data Counting
Custom-Length Records in a File Random Access File Copy Utility
Programs EditingRandom Access File Records Converting Sequen-
tial Files to Random Access Files A Universal Random Access and
Sequential File Display Program Chapter 6 Self-Test

Chapter 7 Random Access File Applications 297

Inventory Control Application Personal Money Management
Application Chapter 7 Self-Test

Final Self-Test 341

Appendix A Basic Reference Guide for Keywords

Used in This Book 353
Appendix B ASCII Chart 355
Index to Example Programs 357
Alphabetical Index to Data File Names 362

Subject Index 364

CHAPTER ONE

Writing BASIC Programs for
Clarity, Readability, and Logic

Objectives: When you have completed this chapter you will be able to:

1. Describe how a program can be written using a top-to-bottom
format.

2. Write an introductory module using REMARK statements.

3. Describe six prettyprinting rules.

4. Describe seven rules to write programs that save memory space.

INTRODUCTION

This text will teach you to use data files in BASIC. You should have already
completed an introductory course or book in BASIC programming, and be able to
read program listings and write simple programs. This is not a book for the
absolute novice in BASIC, but is for those who have never used data files in
BASIC (or elsewhere, for that matter).

The particular data files explained in this text are for the IBM Personal
Computer (IBM PC) with one or two disk drives. The IBM PC Disk Operating
System (DOS), Version 1.10, includes three versions of BASIC: cassette, disk,
and advanced. The disk version was used to develop this book. Cassette BASIC
users will need the instruction provided in Chapters 4 and 5. Advanced BASIC
users will find that all our programs will also work using that version of BASIC.
The programs and activities also work for IBM PC DOS version 2.0. Another
popular version of BASIC, called Microsoft BASIC-80, is also available for those
using the CP/M Operating System on the IBM PC. The programs and procedures
described in this book will also work for those of you using that version of
BASIC,

Data file programming in other versions of BASIC will be similar, but not
identical, to those taught in this book. You will find this book most useful when
used in conjunction with the appropriate reference materials for your computer.

1

2 IBM PC: DATA FILE PROGRAMMING

If you are new to the IBM PC, but not new to BASIC, then it is especially
important that you review the following manuals from the IBM Personal Compu-
ter Hardware and Software Reference Libraries:

Guide to Operations
DOS (Version 1.10 used for this book)
BASIC

Since it is assumed you have some knowledge of programming in BASIC and
have practiced by writing small programs, the next step is for you to begin
thinking about program organization and clarity. Because data file programs can
become fairly large and complex, the inevitable debugging process—making the
program actually work—can be proportionately complex. Therefore, this chap-
ter is important to you because it provides some program organization methods
to help make your future programming easier.

THE BASIC LANGUAGE

The computer language called BASIC was developed at Dartmouth College in
the early 1960s. It was intended for use by people with little or no previous
computer experience who were not necessarily adept at mathematics. The
original language syntax included only those functions that a beginner would
need. As other colleges, computer manufacturers, and institutions began to
adopt BASIC, they added embellishments to meet their own needs. Soon BASIC
grew in syntax to what various sources called Extended BASIC, Expanded
BASIC, SUPERBASIC, XBASIC, BASIC PLUS, and so on. Finally, in 1978 an
industry standard was developed for BASIC, but that standard was for only a
“minimal BASIC,” as defined by the American National Standards Institute
(ANSI). Despite the ANSI standard, today we have a plethora of different BASIC
languages, most of which “look alike,” but each with its own special characteris-
tics and quirks.

In the microcomputer field, the most widely used versions of BASIC were
developed by the Microsoft Corporation and are generally referred to as MICRO-
SOFT BASIC. These BASICs are available on a variety of microcomputers but,
unfortunately, the language is implemented differently on each computer sys-
tem. Microsoft also sells its own versions of BASIC, called BASIC-80 and BASIC-
86, useable on many microcomputers.

The programs and runs shown in the main text were actually performed on an
IBM PC using disk BASIC. For the most part, we used only those language
features that appear to be common in all versions of Microsoft BASIC. We have
also tried to use BASIC language features common to most versions of BASIC,
regardless of manufacturer. We did not attempt to show off all the bells and
whistles found in IBM PC BASIC, but rather, to present easy-to-understand
programs that will run on or be easily adapted to a variety of computers.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY. AND LOGIC 3

THE BASIC LANGUAGE YOU SHOULD USE:
CONSERVATIVE PROGRAMMING

Since you will now be writing longer and more complex programs, you should
adopt conservative programming techniques so that errors will be easier to
isolate and locate. (Yes, you will still make errors. We all do!) This means that
you should not use all the fanciest features available in your version of BASIC
until you have tested the features to be sure they work the way you think they
work. Even then, you still might decide against using your fancy features,
especially those that relate to printing or graphic output and do not work the
same on other computers. Some might be special functions that simply do not
exist on other computers. Leave them out of your programs unless you feel you
must include them.

We have found that not all software (BASIC) features work exactly as de-
scribed in the manufacturer’s reference materials, or that the description may be
subject to misinterpretation. Thus, the more conservative your programming
techniques, the less chance there is of running into a software “glitch.” This
chapter discusses a program format that, in itself, is a conservative programming
technique. ‘

One reason for conservative programming is that your programs will be more
portable or transportable to other computers. “Why should I care about portabil-
ity?” you ask. Perhaps the most important reason is that you will want to trade
programs with friends. But do all of your friends have a computer identical to-
yours? Unless they do, they will probably be unable to use your programs
without modifying them. Conservative programming techniques will minimize
the number of changes required.

Portability is also important for your own convenience. The computer you use
or own today may not be one you will use one year from now, or you may
enhance your system. In order to use today’s programs on tomorrow’s computer
be conservative in your programming,

Use conservative programming to:

*Jsolate and locate errors more easily.
*Avoid software “glitches.”
*Enhance portability.

WRITING READABLE PROGRAMS

Look at the sample programs throughout this book and you will see that they are
easy to read and understand because the programs and the individual statements
are written in simple, straight-line BASIC code without fancy methodology or

language syntax. It is as if the statements are written with the reader rather than
the computer in mind.

4 1BM PC: DATA FILE PROGRAMMING

Writing readable BASIC programs requires thinking ahead, planning your
program in a logical flow, and using a few special formats that make the program
listing easier to the eye. If you plan to program for a living, you may find yourself
bound by your employer’s programming style. However, if you program for
pleasure, adding readable style to your programs will make them that much
easier to debug or change later, not to mention the pride inherent in trading a
clean, readable program to someone else.

A readable programming style provides its own documentation. Such self-
documentation is not only pleasing to the eye, it provides the reader/user with
sufficient information to understand exactly how the program works. This style
is not as precise as “structured programming,” though we have borrowed fea-
tures usually promoted by structured programming enthusiasts. Qur format
organizes programs in MODULES, each module containing one major function
or program activity. We also include techniques long accepted as good program-
ming, but for some reason forgotten in recent years. Most of our suggestions do
NOT save memory space or speed up the program run. Rather, readability is our
primary concern, at the expense of memory space. Later in this chapter, we will
show some procedures to shorten and speed up your programs. Modular style
programs will usually be better running programs and will effectively communi-
cate your thought processes to a reader.

THE TOP-TO-BOTTOM ORGANIZATION

When planning your program, think in terms of major program functions. These
might include some or all of the functions from this list:

DATA ENTRY

DATA ANALYSIS
COMPUTATION

FILE UPDATE
EDITING

REPORT GENERATION

Using our modular process, divide your program into modules, each contain-
ing one of these functions. Your program should flow from module 1 to module 2
and continue to the next higher numbered module. This “top-to-bottom organ-
ization” makes your program easy to follow. Program modules might be broken
up into smaller “blocks,” each containing one procedure or computation. The
size or scope of a program block within a module is determined by the program-
mer and the task to be accomplished. Block style will vary from person to person,
and perhaps from program to program.

USE A MODULAR FORMAT AND TOP-TO-BOTTOM APPROACH

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC &

REMARK STATEMENTS

Separate program modules and blocks from each other by REMARK statements
or blank program lines.

In general, programs designed for readability make liberal use of REMARK
statements, but do not be overzealous. A blank line (or nearly blank) can be
induced using an apostrophe (') as a substitute for the word REMARK, or by
merely typing a line number followed by a colon (:). A line number followed by
REM {e.g., 150 REM) can also be used. These nearly blank lines will help to set off
and highlight program modules or routines.

100 REMARK DATA ENTRY MODULE

110 REMARK «#«#+ READ DATA FROM DATA STATEMENTS 9000-9090
120 '

130 :

140 REM

190 !
200 REMARK COMPUTATION MODULE

Begin each program module, block, or subroutine with an explanatory RE-
MARK and end it with a blank line REMARK statement indicating the end (see
line 190 above).

Consistency in your use of REMARKSs enhances readability. Use REM or
REMARK, but be consistent. Use an apostrophe or colon consistently. Some
writers use the **** shown in line 110 to set off REMARK statements containing
comments from other REMARK statements; others use spaces four to six places
after the REMARK before they add a comment (line 100). Both formats effective-
ly separate REMARK comments from BASIC code.

You can place remarks on the same line as BASIC code using multiple
statement lines, but be sure your REMARK is the LAST statement on the line.
Such “on-line” remarks can be used to explain what a particular statement is
doing. A common practice is to leave considerable space between an on-line
remark and the BASIC code, as shown below.

220 LET C(X) C(X) +U : REM*xCOUNT UNITS IN C ARRAY
240 LET T(X) = T(X) + C(X): REM*+INCREASE TOTALS ARRAY

Liberal use of REMARK statements to separate program modules and blocks is
desirable. Using REMARKS to explain what the program is doing is also desir-
able, but don’t be overzealous or simplistic (LET C = A + B does not require a
REMARK or explanation!). REM should add information, not merely state an
obvious step. “Why” may be more important than “what” in some REMARKS.

Like everything else said in these first chapters, there will be exceptions to
what we say here. Keep in mind that we are trying to get you to think through

6 _IBM PC: DATA FILE PROGRAMMING

your programming techniques and formats a little more than you are probably
accustomed to doing. Thus, our suggested “rules” are just that—suggestions to
which there will be exceptions.

GOTO STATEMENTS

Perhaps the most controversial statement in the BASIC language is the uncon-
ditional GOTO statement. Its use and abuse causes more controversy than any
other statement. Purists say you would never use an unconditional GOTO
statement such as GOTO 100. A more realistic approach suggests that GOTOs
and GOSUBs go down the page to a line number larger than the line number
where the GOTO or GOSUB appears. This is consistent with the “top-to-bottom”
program organization. This same approach, down the page, also applies to using
IF . .. THEN statements (there will be obvious exceptions to this rule).

140 GOTO 210
150 IF X < Y THEN 800
160 GOSUB 8000

A final suggestion: A GOTO, GOSUB, or IF . . . THEN should not go to a
statement containing only a REMARK. If you or the next user of your program
run short of memory space you will delete extra REMARK statements. This, in
turn, requires you to change all your GOTOs line numbers, so plan ahead first.

Bad Good
150 GOTO 300 150 GOTO 300
300 REM DATA ENTRY 299 REM DATA ENTRY

310 LINE INPUT "NAME? " ;N$ 300 LINE INPUT "NAME? ";N§

A FORMAT FOR THE INTRODUCTORY MODULE

The first module of BASIC code (lines 100 through 199 or 1000 through 1999)
should contain a brief description of the program, user instructions when
needed, a list of all variables used, and the initialization of constants, variables,
and arrays.

The very first program statement should be a REMARK statement containing
the program name. Carefully choose a name that tells the reader what the
program does, not just a randomly selected name. After the program’s naie
comes the author or programmer’s name and the date. For the benefit of someone

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 7

else who may like to use your program, include a REMARK describing the
computer system and/or software system used when writing the program.
Whenever the program is altered or updated, the opening remarks should reflect
the change. :

100 REMARK PAYROLL SUBSYSTEM

110 REMARK COPYRIGHT CONSUMER PROGRAMMING CORP 1979
120 REMARK :

130 REMARK HP 2000 BASIC

140 REMARK MODIFIED FOR IBM PC BY J. BROWN

150 REMARK USING DISK BASIC VERSION 1.10

160 REMARK

Follow these remarks with a brief explanation of what the program does,
contained either in REMARK or PRINT statements. Next add user instructions.
For some programs you might offer the user the choice of having instructions
printed or not. If instructions are long, place the request for instructions in the
introductory module and the actual printed instructions in a subroutine toward
the end of your program. That way, the long instructions will not be listed each
time you LIST your program.

170 REMARK THIS PROGRAM WILL COMPUTE PAY AND PRODUCE PRINTED PAYROLL
180 REMARK REGISTER USING DATA ENTERED BY OPERATOR

190 REMARK

200 LINE INPUT "DO YOU NEED INSTRUCTIONS?'": R$

210 IF R$ = "YES" THEN GOSUB 800

220 REMARK

A handy little trick used by some programmers is to place a SAVE command
in a REMark statement near the beginning of every program, for example:

2 'SAVE "PAYSUB"
This allows the programmer simply to edit this line to delete the line number, the

space after the line number, and the apostrophe (the shorthand for REM), and
then to press the End and enter keys to execute the SAVE command.

EDIT 2
SAVE "PAYSUB" <« Press Del(ete) key 3 times so that line 2 looks like
Ok this, then press the End and enter keys, and the prog-

ram is SAVEd. '

This technique saves the program with the assigned name, and can help you
avoid the problems created by saving a program with the wrong name and
accidentally destroying another program. Notice that this technique keeps only
the most current (hopefully corrected) version of your program on the disk, and
destroys each previous version. If you want to keep earlier versions, then adding

8 I1BM PC: DATA FILE PROGRAMMING

a number or some other unique designation to your program’s name will be
necessary.

Follow the description/instructions with a series of statements to identify the
variables, string variables, arrays, constants, and files used in the program.
Again, these statements communicate information to a reader, making it that
much easier for you or someone else to modify the program later. We usually
complete this section after we have completed the program so we don’t forget to
include anything. Sequential and random access files are also identified by
name.

Assign a variable name to all “constants” used. Even though a constant will
not change during the run of the program, a constant may change values between
runs. By assigning it a variable name, you make it that much easier to change the
value; that is, by merely changing one statement in the program. It is a good idea
to jot down notes while writing the program so important details do not slip your
mind or escape notice. When the program has been written and tested {debug-
ged), go back through it, bring your notes up-to-date, and polish the descriptions
in the REMARKS.

220 REM VARIABLES

230 REM G = GROSS PAY

240 REM N = NET PAY

250 REM IT1 = FEDL. INCOME TAX

260 REM IT2 = STATE INCOME TAX

270 REM = S0C. SEC. TAX

280 REM D = DISABILITY TAX

290 REM X,Y,Z, = LOOP VARIABLES

300 REM H(X) = HOURS ARRAY

310 REM N$ = NAME (20)

320 REM PN$ = EMPLOYEE NUMBER (5)

330 REM

340 REM CONSTANTS

350 LET FR = .0613: REM, S0C. SEC. RATE
360 LET SDR = .01: REM SDI RATE
370 REM

380 REM FILES USED

390 REM ITM = FEDL. TAX MASTER FILE
400 REM STM = STATE TAX MASTER FILE
410 REM

(Notice the method used to indicate string length in lines 310 and 320 and the
use of on-line remarks in lines 350 and 360.)

The final part of the introductory module is the initialization section. In this
section, dimension the size of all single and double arrays and all string arrays.
Any variables that need to be initialized to zero can be done here for clear
communication, even though your computer initializes all variables to zero
automatically. This section also includes any user-defined functions before they

