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FOREWORD

This IMA Volume in Mathematics and its Applications
RANDOM SETS: THEORY AND APPLICATIONS

is based on the proceedings of a very successful 1996 three-day Summer
Program on “Application and Theory of Random Sets.” We would like to
thank the scientific organizers: John Goutsias (Johns Hopkins University),
Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico
State University) for their excellent work as organizers of the meeting and
for editing the proceedings. We also take this opportunity to thank the
Army Research Office (ARO), the Office of Naval Research (ONR), and the
Eagan, Minnesota Engineering Center of Lockheed Martin Tactical Defense
Systems, whose financial support made the summer program possible.

Avner Friedman

Robert Gulliver




PREFACE

“Later generations will regard set theory as a disease from which
one has recovered.”
— Henri Poincaré

Random set theory was independently conceived by D.G. Kendall and
G. Matheron in connection with stochastic geometry. It was however G.
Choquet with his work on capacities and later G. Matheron with his in-
fluential book on Random Sets and Integral Geometry (John Wiley, 1975),
who laid down the theoretical foundations of what is now known as the
theory of random closed sets. This theory is based on studying probability
measures on the space of closed subsets of a locally compact, Hausdorff,
and separable base space, endowed with a special topology, known as the
hit-or-miss topology. Random closed sets are just random elements on these
spaces of closed subsets. The mathematical foundation of random closed
sets is essentially based on Choguet’s capacity theorem, which character-
izes distribution of these set-valued random elements as nonadditive set
functions or “nonadditive measures.” In theoretical statistics and stochas-
tic geometry such nonadditive n;éasures are known as infinitely monotone,
alternating capacities of infinite order, or Choguet capacities, whereas in
expert systems theory they are more commonly known as belief measures,
plausibility measures, possibility measures, etc. The study of random sets
is, consequently, inseparable from the study of nonadditive measures.

Random set theory, to the extent that is familiar to the broader tech-
nical community at all, is often regarded as an obscure and rather exotic
branch of pure mathematics. In recent years, however, _various\aspects of
the theory have emerged as promising new theoretical paradigms for sev-
eral areas of academic, industrial, and defense-related R&D. These areas
include stochastic geometry, stereology, and image processing and analysis;
expert systems theory; an emerging military technology known as “infor-
mation fusion;” and theoretical statistics.

Random set theory provides a solid theoretical foundation for certain
image processing and analysis problems. As a simple example, Fig. 1 il-
lustrates an image of an object (a cube), corrupted by various noise pro-
cesses, such as clufter and occlusions. Images, as well as noise processes,
can be modeled as random sets. Nonlinear algorithms, known collectively
as morphological operators, may be used here in order to provide a means
of recovering the object from noise and ‘clutter. Random set theory, in
conjunction with mathematical morphology, provides a rigorous statistical
foundation for nonlinear image processing and analysis problems that is
analogous to that of conventional linear statistical signal processing. For
example, it allows one to demonstrate that there exist optimal algorithms
that recover images from certain types of noise procésses.

In expert systems theory, random sets provide a means of modeling and

vii




viii PREFACE

Random Occlusions

=

;@

Random Clutter

FI1G. 1. Random sets and image processing.

manipulating evidence that is imprecise (e.g., poorly characterized sensor
signatures), vague or fuzzy (e.g., natural language statements), or con-
tingent (e.g., rules). In Fig. 2, for example, we see an illustration of a
natural-language statement such as “Gustav is NEAR the tower.” Each of
the four (closed) ellipses represents a plausible interpretation of the concept
“NEAR the tower,” and the numbers pi, p2, p3, p4 represent the respective
beliefs that these interpretations of the concept are valid. A discrete ran-
dom variable that takes the four ellipses as its values, and which has re-
spective probabilities p;,pa, ps, p4 of attaining those values, is a random set
representative of the concept.

Random sets provide also a convenient mathematical foundation for
a statistical theory that supports multisensor, multitarget information fu-
sion. In Fig. 3, for example, an unknown number of unknown targets are
being interrogated by several sensors whose respective observations can be
of very diverse type, ranging from statistical measurements generated by
radars to English-language statements supplied by human observers. If
the sensor suite is interpreted as a single sensor, if the target set is inter-
preted as a single target, and if the observations are interpreted as a single
finite-set observation, then it turns out that problems of this kind can be
attacked using direct generalizations of standard statistical techniques by
means of the theory of random sets.

Finally, random set theory is playing an increasingly important role in
theoretical statistics. For example, suppose that a continuous but random
voltage is being measured using a digital voltmeter and that, on the basis
of the measured data, we wish to derive bounds on the expected value of
the original random variable, see Fig. 4. The observed quantity is a random
subset (specifically, a random interval) and the bounds can be expressed
in terms of certain nonlinear integrals, called Choguet integrals, computed
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with respect to nonadditive measures associated with that random subset.

On August 22-24, 1996, an international group of researchers convened
under the auspices of the Institute for Mathematics and Its Applications
(IMA), in Minneapolis, Minnesota, for a scientific workshop on the “Ap-
plications and Theory of Randgm Sets.” To the best of our knowledge this
was the first scientific gathering in the United States, devoted primarily to
the subject of random sets and allied concepts. The immediate purpose
of the workshop was to bring together researchers and other parties from
academia, industry, and the U.S. Government who were interested in the
potential application of random set theory to practical problems of both in-
dustrial and government interest. The long-term purpose of the workshop
was expected to be the enhancement of imaging, information fusion, and
expert system technologies and the more efficient dissemination of these
technologies to industry, the U.S. Government, and academia.

To accomplish these two purposes we tried to bring together, and en-
courage creative interdisciplinary cross-fertilization between, three commu-
nities of random-set researchers which seem to have been largely unaware of
each other: theoretical statisticians, those involved in imaging applications,
and those involved in information fusion and expert system applications.
Rather than “rounding up the usual suspects”-a common, if incestuous,
practice in organizing scientific workshops-we attempted to mix experi-
enced researchers and practitioners having complementary interests but
who, up until that time, did not have the opportunity for scientific inter-
change. .

The result was, at least for a scientific workshop, an unusually diverse
group of researchers: theoretical statisticians; academics involved in ap-
plied research; personnel from government organizations and laboratories,
such as the National Institutes of Health, Naval Research and Development,
U.S. Army Research Office, and USAF Wright Labs, as well as industrial
R&D engineers from large and small companies, such as Applied Biomath-
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ematics, Data Fusion Corporation, Lockheed Martin, Neptune and Com-
pany, Oasis Research Center, Raytheon, Texas Instruments, and Xerox.
The papers in this volume reflect this diversity. A few papers are tutorial
in nature, some are detailed mathematical treatises, some are summary
overviews of an entire subject, and still others are investigations rooted in
practical engineering intuition.

The workshop was structured into three sessions, devoted respectively
to the following topic areas, each organized and chaired by one of the
editors:

o Image Modeling and Analysis (J. Goutsias).
o Information/Data Fusion and Ezpert Systems (R.P.S. Mahler).
o Theoretical Statistics and Ezpert Systems (H.T. Nguyen).

Each session was preceded by a plenary presentation given by a re-
searcher of world standing:

o llya Molchanov, University of Glasgow, Scotland.
o Jean-Yves Jaffray, University of Paris VI, France.
o Ulrich Héhle, Bergische Universitét, Germany.

The following institutions kindly extended their support to this work-
shop:

o U.S. Office of Naval Research, Mathematical, Computer, and In-
formation Sciences Division.

o U.S. Army Research Office, Electronics Division.

o Lockheed Martin, Eagan, Minnesota Engineering Center.

The editors wish to express their appreciation for the generosity of these
sponsors. They also extend their special gratitude to the following individ-
uals for their help in ensuring success of the workshop: Avner Friedman,

PREFACE xi

Random Voltage
— R Em—
Digitization
Random Interval ‘
— _
C I 1rT1T 1t 1 17 1. ¢ 1 1§ 1]

Digital Votimeter

3k Expected Value ?
Fic. 4. Random sets and theoretical statistics.

IMA, Director; Julia Abrahams, Office of Naval Research; William Sander,
Army Research Office; Wesley Snyder, North Carolina State University;
Marjorie Hahn, Tufts University; Larry Wasserman, Carnegie-Mellon Uni-
versity; Charles Mills, Lockheed Martin, Director of Engineering; Amy
Cavanaugh, IMA, Workshop Coordinator; and John Schepers, IMA, Work-
shop Financial Coordinator.

In committing these proceedings to the attention of the larger scientific
and engineering community, the editors hope that the workshop will have
thereby contributed to one of the primary goals of IMA: facilitating creative
interchange between statisticians, scientists, and academic and industrial
engineers in technical domains of potential practical significance.

John Goutsias
Ronald P.S. Mahler
Hung T. Nguyen
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MORPHOLOGICAL ANALYSIS OF RANDOM SETS
AN INTRODUCTION

JOHN GOUTSIAS*

Abstract. This paper provides a brief introduction to the problem of processing
random shapes by means of mathematical morphology. Compatibility issues with math-
ematical morphology suggest that shapes should be modeled as random closed sets.
This approach however is limited by theoretical and practical difficulties. Morphological
sampling is used to transform a random closed set into a much simpler discrete random
set. It is argued that morphological sampling of a random closed set is a/sensible thing
to do in practical situations. The pa.per concludes by reviewing three useful random set
models. ;

Key words. Capacity Functional, Dlscretxzatwn, Mathematical Morphology, Ran-
dom Sets, Shape Processing and Analysis.

AMS(MOS) subject classifications. 60D05, 60K35, 68U10 s

1. Introduction. Development of stochastic techniques for image pro-
cessing and analysis is an important area of investigation. Consider, for
example, the problem of analyzing microscopic images of cells, like the ones
depicted in the first row of Fig. Y. Image analysis consists of obtaining mea-
surements characteristic to thé images under consideration. When we are
only interested in geometric measurements (e.g., object location, orienta-
tion, area, perimeter length, etc.), and in order to simplify our problem,
we may decide to reduce gray-scale images into binary images by means of
thresholding, thus obtaining shapes, like the ones depicted in the second
row of Fig. 1. Since shape information is frequently random, as is clear from
Fig. 1, binary microscopic images of cells may be conceived as realizations
of a two-dimensional random set model. In this case, measurements are
considered to be estimates of random variables, and statistical analysis of
such random variables may lead to successful shape analysis.

There are other reasons why stochastic techniques are important for
shape processing and analysis. In many instances, shape information is not
directly observed. For example, it is quite common that a three-dimensional
object (e.g., a metal or a mineral) is partially observed through an imag-
ing system that is only capable of producing two-dimensional pictures of
cross sections. The problem here is to infer geometric properties of the
three-dimensional object under consideration by means of measurements
obtained from the two-dimensional cross sections (this is the main theme
in stereology (1], an important branch of stochastic geometry [2]). Another
example is the problem of restoring shape information corrupted by sensor

* Department of Electrical and Computer Engineering, Image Analysis and Commu-
nications Laboratory, The Johns Hopkins University, Baltimore, MD 21218 USA. This
work was supported by the Office of Naval Research, Mathematical, Computer, and
Information Sciences Division, under ONR Grant N00060-96-1376.
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F1c. 1. Gray-scale (first row) microscopic images of cells and their binary counterparts
(second row) obtained after thresholding. Geometric features of interest (e.g., location,
orientation, area, perimeter length, etc.) are usually preserved after thresholding.

noise and clutter. This task is very important in military target detection
problems, where targets are frequently imaged through hostile environ-
ments by means of imperfect imaging sensors. Both problems consist of
recovering shape information from imperfectly or partially observed data
and are clearly ill-posed inverse problems that need proper regularization.

A popular approach to regularizing inverse problems is by means of
stochastic regularization techniques. A random model is assumed for the
images under consideration and statistical techniques are then employed for
recovering lost information from available measurements. This approach
frequently leads to robust and highly effective algorithms for shape recov-
ery. To be more precise, let us consider the problem of restoring shape
information from degraded data. Shapes are usually combined by means
of set union or intersection (or set difference, since A~ B = AN B¢). It
is therefore reasonable to model shapes as sets (and more precisely as ran-
dom sets) and assume that data Y are described by means of a degradation
equation of the form:

1.1) Y = (X~N;)UN;,
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F1G. 2. A binary Picasso image X, the degradation noises N1, N3, and data Y, obtained
by means of (1.1). i

where X is a random set that models the shape under consideration and
N;, N3 are two random sets that model degradation. In particular, Ny
may model incomplete data collection, whereas, N3 may model degradation
due to sensor noise and clutter. Figure 2 depicts the effect of degradations
Ni, N3 on a binary Picasso image! by means of (1.1). The problem of
shape restoration consists of designing a set operator ¥ such that

(1.2) X = ¥(Y) = ¥(X~N;)UN,),

is “optimally” close to X, in some sense. Refer to [3], [4] for more in-
formation on this subject and for specific “optimal” techniques for shape
restoration by means of random set modeling.

Since shapes are combined by means of unions and intersections, it
is natural to consider morphological image operators ¥ in (1.2) [5]. This
leads to a popular technique for shape processing and analysis, known as
mathematical morphology, that is briefly described in Section 2. Our main
purpose here is to provide an introduction to the problem of processing ran-
dom shapes by means of mathematical morphology. Compatibility issues
with mathematical morphology suggest that shapes should be modeled as

1 Pablo Picasso, Pass with the Cape, 1960.




6 JOHN GOUTSIAS

random closed sets [6]. However, this approach is limited by theoretical
and practical difficulties, as explained in Section 3. In Section 4, morpho-
logical sampling is employed so as to transform a random closed set into a
much simpler discrete random set. It is argued that, in many applications,
morphological sampling of a random closed set is a sensible thing to do.
Discrete random sets are introduced in Section 5. Three useful random set
models are then presented in Section 6, and concluding remarks are finally
presented in Section 7.

2. Mathematical morphology. A popular technique for shape pro-
cessing and analysis is mathematical morphology. This technique was orig-
inally introduced by Matheron [6] and Serra’[7] as a tool for investigating
geometric structure in binary images. Although extensions of mathemati-
cal morphology to grayscale and other images (e.g., multispectral images)
exist (e.g., see the book by Heijmans [5]), we limit our exposition here to
the binary case. In the following, a binary image X will be first considered
to be a subset of the two-dimensional Euclidean space R?.

Morphological shape operators are defined by means of a structuring
element A C R? (shape mask) which interacts with a binary image X so
as to enhance or extract useful information. The type of interaction is
determined by testing whether the translated structuring element A, =
{a+v | a € A} hits or misses X i.e., testing whether X N A, # 0 (A, hits
X) or XN A, =0 (A, misses X). This is the main idea behind the most
fundamental morphological operator, known as the hit-or-miss transform,
given by )

(2.1) X®(A,C) = {veR?*|4,CX,XNC, =0},

where A, C are two structuring elements such that ANC = 0. Although the
hit-or-miss transform satisfies a number of useful properties, perhaps the
most striking one is the fact that any translation invariant shape operator
¥ (i.e., an operator for which ¥(X,) = [¥(X)],, for every v € R?) can be
written as a union of hit-or-miss transforms (e.g., see [5]).

When C = 0 in (2.1), the hit-or-miss transform reduces to a morpho-
logical operator known as erosion. The erosion of a binary image X by a
structuring element A is given by

X0A = {veR?|A, CX)})

It is clear that erosion comprises of all points v of R? for which the struc-
turing element A,, located at v, fits inside X. The dual of erosion, with
respect to set complement, is known as dilation. The dilation of a binary
image X by a structuring element A is given by

(2.2) X0A = (X°0A)F = (veR? | XNA, #0},

where A = {—v | v € A} is the reflection of A about the origin. Therefore,
dilation comprises of all points v of R? for which the translated structuring
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F1c. 3. Erosion and dilation of the Picasso image X depicted in Fig. 2 by means of
a 5 X 5 SQUARE structuring element A. Notice that erosion comprises of all pizels
v of X for which the translated structuring element A, fits inside X, whereas dilation
comprises of all pizels v in R? for which the translated structuring element A, hits X.

element A, hits X. From (2.1) and (2.2) it is clear that X ® (0, 4) =
(X ® A)°, and dilation is therefore the set complement of the hit-or-miss
transform of X by (8, A). It can be shown that erosion is increasing (ie.
X CY = X0A CYOA) and distributes over intersection (i.e., (N;er X;)©
A = Nicr(X; © A)), whereas, dilation is increasing and distributes over
union (i.e., (UierXi) ® A = Uier(X; ® A)). Furthermore, if A contains the
origin, then erosion is anti-eztensive (ie.,, X© A C X ) whereas dilation
is eztensive (i.e., X C X @ A). The effects of erosion and dilation on the
binary Picasso image are illustrated in Fig. 3.

Suitable composition of erosions and dilations generates more compli-
cated morphological operators. One such composition produces two useful
morphological operators known as opening and closing. The opening of a
binary image X by a structuring element A is given by

X0A = (XoA)®A,
whereas the closing is given by
X0A = (X®A)oA.
It is not difficult to show that XOA = {J,, 5 ,cxAv and, therefore, the
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FIG. 4. Opening and closing of the Picasso image X depicted in Fig. 2, by means of
a 5 x 5 SQUARE structuring element A. Notice that opening comprises of the union
of all translated structuring elements A, that fit inside X, whereas closing is the set
complement of the union of all translated structuring elements A, that fit inside X°.

opening XOA is the union of all translated structuring elements A, that
fit inside shape X. On the other hand, the closing is the dual of open-
ing in the sense that X@A = (X cQA)°. It can be shown that opening
is increasing, anti-extensive, and idempotent (i.e., (X 0A)OA = X0A4),
whereas closing is increasing, extensive, and idempotent. Figure 4 depicts
the effects of opening and closing on the binary Picasso image. Notice that
the opening X OA behaves as a shape filter, in the sense that it eliminates
all components of X that cannot contain a translated copy of A. In fact,
opening and closing are special cases of morphological filters [8]. By defi-
nition, a morphological filter is any image operator that is increasing and
idempotent. Clearly, opening and closing are morphological filters whereas
erosion and dilation are not, since they are not idempotent.

3. Random sets. A random set (RS) on R? is a random element
that takes values in a collection S of subsets of R%. If (Q,X(Q),p) is a
probability space [9], then a RS X is a measurable mapping from Q into
S, that is

{we Q| X(w) e A} € 2(Q), VA€ Z(S),
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where £(S) is an appropriate o-field in S. The RS X defines a probability
distribution Px on £(S) by

PxlA] = plfw e Q] X(w) € A}, VAEZ(S).

A common choice for S is the power set P = P(R?) of R? (i.e., the
collection of all subsets of R?) with £(S) = £(P) being the o-field in P
generated by sets of the form {X € P |v; ¢ X,i=1,2,..,m; w; € X,j =

. 1,2,...,n}, where v;, w; € R?, and m,n > 0 are integers. It is worthwhile

noticing here that X(P) is also generated by the simple family {{X €
PlXn{v}=0}Lve R?}. Consider the finite-dimensional distribution
functions of RS X, given by

Punvzw-,"u(xlaz%'“91'11) = Px| Ix(v) ==, 1= 1,2, _—r

where

Ix(v) = 1, ifveX
X7 1 0, otherwise ’

is the indicator function of X/ and v; € ]RZ, z; € {0,1}. As a direct
consequence of Kolmogorou’s theorem (9], the probability distribution of a
RS X:  — P is uniquely determined from a collection of finite-dimensional
distribution functions {pvl'v@v"(xl,mz, o Zn); v € R%,2; € {0,1},n >
1} that satisfy Kolmogorov'stonditions of symmetry and consistency [9]
(see also [10]). Therefore, a random set X: £ — P is uniquely specified by
means of its finite-dimensional distribution functions.

A question that immediately arises here is whether the previous choices

' for S and %(S) lead to a definition for a RS that is compatible with mathe-

matical morphology. To be more precise, let us concentrate on the problem
of transforming a RS by means of a morphological operator ¥ (that, in
this paper, is limited to an erosion, dilation, opening, or closing). If X is
a random set, it is expected that ¥(X) will also be a random set. This
translates to the requirement that morphological operators need to be mea-
surable with respect to X(S). For example, if X is a RS, we expect that the
dilation X @ K of X by a compact (i.e., topologically closed and bounded)
structuring element K is a RS as well. However, it is not difficult to verify
that {X e P |v¢ X @K} ={X € P| XN (K ® {v}) = 0}, which is
clearly not an element of X(P), since K is not necessarily finite. Hence, it
is not in general possible to determine the probability Pxex [Ixex (v) = 0]
that the dilated RS X & K does not contain point v from the probability
distribution of RS X. In other words, the previous probabilistic description
of RS X is not sufficiently rich to determine the probability distribution
of a morphologically transformed RS X & K. Therefore, the previously
discussed choices for S and I(S) are not compatible with mathematical
morphology. If we assume that shapes include their boundary (which is
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the most common case in practice), then we can set § = F, where F is the
collection of all closed subsets of R?, and consider a o-field ©(F) containing
sets of the form {X € F | XNK = 0}, for K € K, where K is the collection
of all compact subsets of RZ. It can be shown that the smallest such o-field
is the one generated by the family {{X € F | X N K =0}, K € K} as well
as by the family {{X € F | X NG # 0},G € G}, where G denotes the
collection of all (topologically) open subsets of R%. This leads to modeling
random shapes by means of random closed sets (RACS). A RACS X is a
measurable mapping from €2 into F, that is [6], [11]

{we Q| X(w) e A} € £(Q), VA€ Z(F).
The RACS X defines a probability distribution Px on X(F) by
Px[A] = pl{w e Q| X(w) € A}], VAEL(F).

An alternative to specifying a RACS by means of a probability distri-
bution, that is defined over classes of sets in £(F), is to specify the RACS
by means of its capacity functional, defined over compact subsets of R2.
The capacity functional Tx of a RACS X is defined by

Tx(K) = Px[XNK#0], VKek.
" This functional satisfies the following five properties:
PROPERTY 3.1. Since no closed set hits the empty set, Tx (8) =

PROPERTY 3.2. Being a probability, Tx satisfies 0 < Tx(K) < 1, for every
KeKk.

PROPERTY 3.3. The capacity functional is increasing on K; i.e.,
Ky,Ks € K and K; CKy = Tx(Kl) < Tx(Kg) .

PROPERTY 3.4. The capacity functional is upper semi-continuous {u.s.c.)
on K, which is equivalent to

Ko lK in K = Tx(Kn) | Tx(K),

where A, | A means that {A4,} is a decreasing sequence such that inf 4,
= A.

PROPERTY 3.5. If, for K, K;,K>,... € K,
31 QPK) = Qx(K) = PxXnK =0] = 1-Tx(K),
and
QY (K Ky, K,y Kn) = S;“”(K-KI,KZ,... Kn_1)
Q¢ V(K UKu; K1, Kz, .oy Kn1)
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forn=1,2,..., then

0< QP (K; K1, Kz, .., Ku)
(3.2) = Px[XNK=0; XNK;#0,i=12,..,n] <1,

for every n > 1.

A functional T'x that satisfies properties 3.3-3.5 above is known as an
alternating capacity of infinite order or a Choguet capacity [12]. Therefore,
the capacity functional of a RACS is a Choquet capacity that in addition
satisfies properties 3.1 and 3.2. As a direct consequence of the Choquet-
Kendall-Matheron theorem [6], [12], [13], the probability distribution of a
RACS X is uniquely determined from a Choquet capacity Tx (K),K € K,
that satisfies properties 3.1 and 3.2. It can be shown that

Tx(K1 UKz) < Tx(K1)+Tx(K2) s VK,Ke: K1NKy = 0.

The capacity functional is therefore only subadditive and hence not a mea-
sure. However, knowledge of Tx(K), for every K € K, allows us de-
termine the probability distribution of X. Functional Qx(K) in (3.1)
is known as the generating functional of RACS X, whereas, functional

(") (K; Ky, K2, ..., Ky) is the pyobability that the RACS X misses K and
hltS K;,i=1,2,..,n (see (3.2)).

Let us now consider the problem of morphologically transforming a
RACS. As we mentioned before, if ¥: F — F is a measurable operator
with respect to L(F), then ¥(X) will be a RACS, provided that X is a
RACS. In simple words, the probability distribution of ¥(X) can be in
principle determined from the probability distribution of X and knowledge
of operator W, It can be shown that erosion, dilation, opening, and closing
of a closed set, by means of a compact structuring element, are all mea-
surable with respect to X(F). Therefore, erosion, dilation, opening, and
closing of a RACS, by means of a compact structuring element, is also a
RACS. Understanding the effects that morphological transformations have
on random sets requires statistical analysis. We would therefore need to
relate statistics of ¥(X) with statistics of X. This can be done by relating
the capacity functional Ty(x) of ¥(X) with the capacity functional Tx of
X. In general, a simple closed-form relationship is feasible only in the case
of dilation, in which case [6], [14]

(3.3) Txea(K) = Tx(K®A), VA KeK.
However, it can be shown that [15]

(34)  Txea(K) = 1= (-1)¥IRx(K' @A), VA K €K, ,
K'CK
with
(35) Rx(K)=Px[X2K]= Y (-)¥[1-Tx(K')], VK € K,,
K'CK
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where K, C K is the collection of all finite subsets of R2. Therefore, a
closed-form relationship between Txga(K) and Tx (K) can be obtained,
by means of (3.4), (3.5), when both A and K are finite. Furthermore, and
as a direct consequence of (3.3)—(3.5), we have that [15]

(36) TxoaK) =1-3. (-)FIRx(K'®4),VAK€K,,

K'CKpA
whereas
(3.7 TxealK)=1 - Z(—l)'K'|qu?A(K’ ©A), VA K K, ,
K'CK
with
(38) BxealX) = Y (-)¥[1-Tx(K'®A)], VK €K, .
K'CK

It is worthwhile noticing that (3.4)—(3.8) are related to the well known
Mébius transform of combinatorics (e.g., see [16]). If W is a finite set,
P(W) its power set, and U(K) is a real-valued functional on P(W), then
the Mobius transform of U is a functional V(K') on P(W), given by

(3.9) V(K) = ) UK'), VK€ P(W).
K'CK

Referring to (3.4), (3.5), it is clear that 1 — T'xg 4(K) is the Mobius trans-
form of functional (—1)!¥1 Rx (K @ A), whereas Rx (K) is the Mdbius trans-
form of functional (—1)!¥1[1~Tx (K)]. Similar remarks hold for (3.6)—(3.8).
Notice that U(K) can be recovered from V(K) by means of the inverse
Moébius transform, given by

(3.10) UK) = ). (;1)'K\K"V(K'), VK € P(W).
K/'CK

Direct implementation of (3.4)-(3.8) is hampered by substantial stor-
age and computational requirements. However, the storage scheme and the
fast Mébius transform introduced in [17] can be effectively employed here
so0 as to ease such requirements. We should also point-out here that the
capacity functional of a RACS is the same as the plausibility functional
used in the theory of evidence in expert systems [18], and that Rx (K) in
(3.5) is known as the commonality functional [17]. Finally, there is a close
relationship between random set theory and expert systems, as is nicely
explained by Nguyen and Wang in [19] and Nguyen and Nguyen in [20].

4. Discretization of RACSs. From our previous discussion, it is
clear that the capacity functionals Txga(K), Txo4(K), and Ty g 4(K)
can be evaluated from the capacity functional Tx (K) only when A and
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K are finite. It is therefore desirable to: (a) consider finite structuring
elements A, and (b) make sure that RACSs X 6 A, X0OA, and X@®A are
uniquely specified by means of their capacity functionals only over X,.
Requirement (b) is not true in general, even if A is finite. However, we
may consider discretizing X, by sampling it over a sampling grid S, in
order to obtain a discrete random set (DRS) Xy = o(X), where o is a
sampling operator. It will soon become apparent that a DRS is uniquely
specified by means of its capacity functional only over finite subsets of
R2. It is therefore required that erosion, dilation, opening, or closing of a
RACS X by a compact structuring element A be discretized. Moreover, it
is desirable that the resulting discretization produces an erosion, dilation,
opening, or closing of a DRS Xy = ¢(X) by a finite structuring element
Aq = 0(A). In this case, the discretized morphological transformations
X, 6 Ag, Xa & Ag, X40A4, and X,;@Ay will be DRSs, whose capacity
functional can be evaluated from the capacity functional of X4, by means
of (3.3)-(3.8). Notice however that this procedure should be done in such
a way that the resulting discretization is a good approximation (in some
sense) of the original continuous problem. We study these issues next.
Let S be a sampling grid in R?, such that

S = {klel + koes | ki, ky € Z} s

where e; = (1,0), e = (0,1) are the two linearly independent unit vectors
in R? along the two coordinate directions and Z is the set of all integers.
Consider a bounded open set C, given by

C = {zie1 +Taen | —1 < 71,72 < 1},

known as the sampling elemnent. Let P(S) be the power set of S. Then, an
operator g: F — P(S), known as the sampling operator, is defined by

1) o(X) = {s€S|C,NX£0} = (X®C)NS, XeF,

whereas, an operator p: P(S) — F, known as the reconstruction operator,
is defined by

(4.2) p(V) = {veR*|C,NSCV}, VEP(S).

See [5], [21], [22] for more details. The combined operator = = po is known
as the approzimation operator. When operator ¢ is applied on a closed
set X € F it produces a discrete set 6(X) on S. On the other hand,
application of operator p on a discrete set o(X) produces a closed set 7(X)
= po(X) that approximates X. The effects that operators o, p, and 7 have
on a closed set X are illustrated in Fig. 5.

Whether or not a closed set X is well approximated by 7(X) depends
on how fine X is sampled by the sampling operator o. To mathematically
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F1G. 5. The effects of morphological sampling o, reconstruction p, and aepprozimation
7 on a closed subset X of R2.

quantify this, consider sequences {Sy}n>1 and {Crn}n31 of sampling grids
and sampling elements, such that

1
Swi1=3Smn21, 8 =5 and c,,+1=%c,,, n>1,C=C,

where cX = {cz | z € X}. We then define sampling and reconstruction
operators 0, and py, by replacing S and C in (4.1), (4.2), by S» and Ch.
This determines a sequence of increasingly fine discretizations of a closed
set X, denoted by D = {Sn,0n,Pn}n>1, that is known as the covering
discretization [5], [22]. It can be shown that, for X € F,

X C - CMppa(X) Cn(X) S Fpa(X) C--- Cm(X),
and

() mX) = X,

n>1
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which means that the approximation m,(X) of X monotonically converges
to X from above (this is also denoted by mn(X) | X), which implies that
mn(X) % X, where -5 denotes convergence in the hit-or-miss topology (see
(5], [6] for more information about the hit-or-miss topology).

For every n = 1,2, ..., define a sequence Xg,n by (recall (4.1))

Xin = oa(X) = (X®Cr)N Sy,
where X is a RACS, and a sequence X, by (recall (4.2))
X, = pn(xd,n) = PnUn(X) = Wn(X) = {‘U e R? | (Cn)v NS, C Xd,n} .

X4 almost surely (a.s.) contains a countable number of points and is
therefore a DRS. On the other hand, it is known that X, is an a.s. closed
set, whereas it has been shown in {10] that 7, is a measurable mapping;
therefore, X, is a RACS. In fact, it is not difficult to show that X, | X,
a.s., which implies that X, % X, as., as well. Furthermore, if A is a
D-regular compact structuring element, for which

(4.3) A = ny(A), forsomel <N < o0,
then it can be shown that [10], [/2/3]
pa(0a(X)© 0,(4)) ZXOA, as.,

pu(on(X) @ 0n(4) 2 XOA, as.,
pn(0n(X)00,(4)) 5 XOA, as.,

pr(0n(X)@0,(4)) 5 X@A, as..

This means that the covering discretization guarantees that erosion, dila-

tion, opening, or closing of a RACS X by a D-regular compact structuring
element A (i.e., a structuring element that satisfies (4.3)) can be well ap-
proximated by an erosion, dilation, opening, or closing, respectively, of a
DRS 0,(X) by a finite structuring element 0,(B), for some large n, as
is desirable. The requirement that A is a D-regular compact structuring
element is not a serious limitation since a wide collection of structuring
elements may satisfy this property [23].

The previous' results focus on the a.s. convergence of discrete mor-
phological operators to their continuous counterparts. However, results
concerning convergence of the associated capacity functionals also exist. It
has been shown in [10] that the capacity functional of the approximating
RACS 7,(X) monotonically converges from above to the capacity func-
tional of RACS X i.e.,

Tr.)(K) L Tx(K) , VK €K.
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Furthermore, it has been shown that the capacity functional of RACS
Pn(0n(X) © 0n(A)) converges to the capacity functional of RACS X © 4,
in the limit, as n — oo, provided that A is & D-regular compact structur-
ing element, with a similar convergence result being true for the case of
dilation, opening, and closing, Finally, it has been shown that

nl_i.’HgOTxdm(O‘n(K)) = Tx(K), VK ek,
and

Jim Tx, .00.(4)(0a(K)) = Txea(K), VK €K,

provided that A is a D-regular compact structuring element, with a similar
convergence result being true for dilation, opening, and closing. Therefore,
and for sufficiently large n, the continuous morphological transformations
X0A XA, XOA, and X@A, can be well approximated by the discrete
morphological transformations Xy, © 0,(A), X4 5 ® 0n(A), XanO0a(A4),
and X;,®0,(A), respectively, provided that A is a D-regular compact
structuring element. This shows that, in most practical situations, it will
be sufficient enough to limit our interest to a DRS Xg = o(X) = X &
C)N S instead of RACS X, for a sufficiently fine sampling grid S, with the
benefit (among some other benefits) of relating the capacity functional of
a morphologically transformed DRS ¥(X,) to the capacity functional of
X4, by means of (3.3)-(3.8). It can be shown that

Txd(K) = PX[Xn((KﬂS)EBC)#ﬂ], VK e K,

which shows that the capacity functional of the DRS X, need to be known
only over finite subsets of S. Finally, it has been shown in [10] that

Tx,(B) = sup{Tx(K); KeK, KCB&C}, VBeTI,

where 7 is the collection of all bounded subsets of S, which relates the
capacity functional of the DRS X4 = o(X) with the capacity functional of

- RACS X.

5. Discrete random sets. Following our previous discussion, given
a probability space (2, £(£2), 1), & DRS X on Z? is a measurable mapping
from 2 into Z, the power set of Z%, that is

{we|X(w)e A} eE(?), VA X(2),

where E(Z) is the o-field in Z generated by the simple family {{X € Z |
X N B = 0}, B € B}, where B is the collection of all bounded subsets of Z>.
A DRS X defines a probability distribution Px on £(Z) by

PxlA] = pl{w e Q| X(w) e A}}, VA€ X(Z).
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The discrete capacity functional of a DRS X is defined by
Tx(B) = Px[XNB#0], VBeB.

This functional satisfies the following four properties:

PROPERTY 5.1. Since no set hits the empty set, Tx(8) = 0.

PROPERTY 5.2. Being a probability, Tx satisfies 0 < Tx(B) < 1, for every
BeB. ‘

PRrROPERTY 5.3. The discrete c?;pacity functional is increasing on B; i.e.,
Bi,B,€B and B; C B, = Tx(B1) <Tx(Ba).

PROPERTY 5.4. If, for B, By, By, ... € B,

1) QP(B) = Qx(B) = Px[XnB=10] = 1-Tx(B),

and

Q) (B; By, Bz, .-, Bn) /= Q(B; By, By, .y Ba-1)
—._ Q‘()?—l)(B U B’n; BI) B21 e Bn—l) )

forn=1,2,..., then

OS Qg?)(B;BlaB%-"’Bn)
(5.2) = Px[XNnB=0§XnNB; #0,i=12,..,n <1,

for every n 2> 1.

As a special case of the Choquet-Kendall-Matheron theorem, the prob-
ability distribution of a DRS is uniquely determined by a discrete capacity
functional Tx(B), B € B, that satisfies properties 5.1-5.4 above. Func-
tional @x(B), B € B, in (5.1) is known as the discrete generating func-
tional of X, whereas, functional Q" (B; By, By, ..., By), B, B, By, ..., Bn
€ B, is the probability that the DRS X misses B and hits B;, i =1,2,...,n
(see (5.2)).

In practice, images are observed through a finite-size window W, |W| <
00, where |A| denotes the cardinality (or area) of set A. Therefore, it seems
reasonable to consider DRSs whose realizations are limited within W. Let
Bw be the collection of all (bounded) subsets of Z? that are included in
W. A DRS X is called an a.s. W-bounded DRSif Px[X € By]=1. Tt is
not difficult to see that an a.s. W-bounded DRS is uniquely specified by
means of a discrete capacity functional T (B), B € Bw. Furthermore, if
Mx(X), X € Bw, is the probability mass function of X, i.e., if

Mx(X) = Px[X=X], X€Bw,



