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Preface

The present monograph is the first systematic, book-length exposition of
robust statistics. The technical term “robust” was coined only in 1953 (by
G. E. P. Box), and the subject matter acquired recognition as a legitimate
topic for investigation only in the mid-sixties, but it certainly never was a
revolutionary new concept. Among the leading scientists of the late nine-
teenth and early twentieth century, there were several practicing statisti-
cians (to name but a few: the astronomer S. Newcomb, the astrophysicist
A. Eddington, and the geophysicist H. Jeffreys), who had a perfectly clear,
operational understanding of the idea; they knew the dangers of long-tailed
error distributions, they proposed probability models for gross errors, and
they even invented excellent robust alternatives to the standard estimates,
which were rediscovered only recently. But for a long time theoretical
statisticians tended to shun the subject as being inexact and “dirty.” My
1964 paper may have helped to dispel such prejudices. Amusingly (and
disturbingly), it seems that lately a kind of bandwagon effect has evolved,
that the pendulum has swung to the other extreme, and that “robust™ has
now become a magic word, which is invoked in order to add respectability.

This book gives a solid foundation in robustness to both the theoretical
and the applied statistician. The treatment is theoretical, but the stress is
on concepts, rather than on mathematical completeness. The level of
presentation is deliberately uneven: in some chapters simple cases are
treated with mathematical rigor; in others the results obtained in the
simple cases are transferred by analogy to more complicated situations
(like multiparameter regression and covariance matrix estimation), where
proofs are not always available (or are available only under unrealistically
severe assumptions). Also selected numerical algorithms for computing
robust estimates are described and, where possible, convergence proofs are
given.

Chapter 1 gives a general introduction and overview; it is a must for
every reader. Chapter 2 contains an account of the formal mathematical
background behind qualitative and quantitative robustness, which can be
skipped (or skimmed) if the reader is willing to accept certain results on
faith. Chapter 3 introduces and discusses the three basic types of estimates
(M-, L-, and R-estimates), and Chapter 4 treats the asymptotic minimax

v
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theory for location estimates; both chapters again are musts. The remain-
ing chapters branch out in different directions and are fairly independent
and self-contained; they can be read or taught in more or less any order.

The book does not contain exercises—I found it hard to invent a
sufficient number of problems in this area that were neither trivial nor too
hard—so it does not satisfy some of the formal criteria for a textbook.
Nevertheless I have successfully used various stages of the manuscript as
such in graduate courses.

The book also has no pretensions of being encyclopedic. I wanted to
cover only those aspects and tools that I personally considered to be the
most important ones. Some omissions and gaps are simply due to the fact
that I currently lack time to fill them in, but do not want to procrastinate
any longer (the first draft for this book goes back to 1972). Others are
intentional. For instance, adaptive estimates were excluded because I
would now prefer to classify them with nonparametric rather than with
robust statistics, under the heading of nonparametric efficient estimation.
The so-called Bayesian approach to robustness confounds the subject with
admissible estimation in an ad hoc parametric supermodel, and still lacks
reliable guidelines on how to select the supermodel and the prior so that
we end up with something robust. The coverage of L- and R-estimates was
cut back from earlier plans because they do not generalize well and get
awkward to compute and to handle in multiparameter situations.

A large part of the final draft was written when I was visiting Harvard
University in the fall of 1977; my thanks go to the students, in particular to
P. Rosenbaum and Y. Yashizoe, who then sat in my seminar course and
provided many helpful comments.

P. J. HUBErR

Cambridge, Massachusetts
July 1980
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CHAPTER 1

Generalities

1.1 WHY ROBUST PROCEDURES?

Statistical inferences are based only in part upon the observations. An
equally important base is formed by prior assumptions about the underly-
ing situation. Even in the simplest cases, there are explicit or implicit
assumptions about randommness and independence, about distributional
models, perhaps prior distributions for some unknown parameters, and so
on.

These assumptions are not supposed to be exactly true—they are
mathematically convenient rationalizations of an often fuzzy knowledge or
belief. As in every other branch of applied mathematics, such rationaliza-
tions or simplifications are vital, and one justifies their use by appealing to
a vague continuity or stability principle: a minor error in the mathematical
model shouid cause only a small error in the final conclusions.

Unfortunately, this does not always hold. During the past decades one
has become increasingly aware that some of the most common statistical
procedures (in particular, those optimized for an underlying normal dis-
tribution) are excessively sensitive to seemingly minor deviations from the
assumptions, and a plethora of alternative “robust” procedures have been
proposed.

The word “robust” is loaded with many—sometimes inconsistent—
connotations. We use it in a relatively narrow sense: for our purposes,
robustness signifies insensitivity to small deviations from the assumptions.

Primarily, we are concerned with distributional robustness: the shape of
the true underlying distribution deviates slightly from the assumed model
(usually the Gaussian law). This is both the most important case and the
best understood one. Much less is known about what happens when the
other standard assumptions of statistics are not quite satisfied and about
the appropriate safeguards in these other cases.

The following example, due to Tukey (1960), shows the dramatic lack of
distributional robustness of some of the classical procedures.



2 GENERALITIES

Example 1.1 Assume that we have a large, randomly mixed batch of n
“good” and “bad” observations x; of the same quantity u. Each single
observation with probability 1 —¢ is a “good” one, with probability ¢ a
“bad” one, where ¢ is a small number. In the former case x; is (g, 02), in
the latter 9(p,902). In other words all observations have the same mean,
but the errors of some are increased by a factor of 3.

Equivalently, we could say that the x, are independent, identically
distributed with the common underlying distribution

F(x)=(1—e)@(x—;—”)+s¢°(%), (1.1)

where

®(x)=

[ erre (1)

27 -

is the standard normal cumulative.
Two time-honored measures of scatter are the mean absolute deviation

d,=— 2 |x,—X| (1.3)

and the mean square deviation
1/2
s,.=[%2(x,-—f)’] : (1.4)

There was a dispute between Eddington (1914, p. 147) and Fisher (1920,
footnote on p. 762) about the relative merits of 4, and s,. Eddington
advocated the use of the former: “This is contrary to the advice of most
textbooks; but it can be shown to be true.” Fisher seemingly settled the
matter by pointing out that for normal observations s, is about 12% more
efficient than d,.

Of course, the two statistics measure different characteristics of the error
distribution. For instance, if the errors are exactly normal, s, converges to
o, while d, converges to V2 /7 0~0.800. So we must be precise about how
their performances are to be compared; we use the asymptotic relative
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efficiency (ARE) of d, relative to s,, defined as follows:

ARE(e)= lim var(s,)/(Es, )
n—>00 var(d,,)/([«j'aln)2
[ 3(1+80e)

4
(1+8¢)? /

w(1+8¢) 1
2(1+2¢)?

The results are summarized in the Exhibit 1.1.1.

The result is disquieting: just 2 bad observations in 1000 suffice to offset
the 12% advantage of the mean square error, and ARE(e) reaches a
maximum value greater than 2 at about £¢=0.05.

This is particularly unfortunate since in the physical sciences typical
“good data” samples appear to be well modeled by an error law of the
form (1.1) with ¢ in the range between 0.01 and 0.1. (This does not imply
that these samples contain between 1% and 10% gross errors, although this
is very often true; the above law (1.1) may just be a convenient description
of a slightly longer-tailed than normal distribution.) Thus it becomes
painfully clear that the naturally occurring deviations from the idealized
model are large enough to render meaningless the traditional asymptotic
optimality theory: in practice we should certainly prefer d, to s, since it is
better for all € between 0.002 and 0.5.

€ ARE(¢e)

0 0.876

0.001 0.948

0.002 1.016

0.005 1.198

0.01 1.439

0.02 1.752

0.05 2.035

0.10 1.903

0.15 1.689

0.25 1.371

0.5 1.017 Exhibit 1.1.1 Asymptotic efficiency of mean absolute
1.0 0.876 relative to mean square deviation.

From Huber (1977b), with permission of the publisher.
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To avoid misunderstandings, we should hasten to emphasize what is not
implied here. First, the above does not imply that we advocate the use of
the mean absolute deviation (there are still better estimates of scale).
Second, some people have argued that the example is unrealistic insofar as
the “bad” observations will stick out as outliers, so any conscientious
statistician will do something about them before calculating the mean
square error. This is beside the point; outlier rejection followed by the
mean square error might very well beat the performance of the mean
absolute error, but we are concerned here with the behavior of the
unmodified classical estimates.

The example clearly has to do with longtailedness: lengthening the tails
of the underlying distribution explodes the variance of s, (d, is much less
affected). Shortening the tails, on the other hand, produces quite negligible
effects on the distributions of the estimates. (It may impair the absolute
efficiency by decreasing the asymptotic Cramér-Rao bound, but the latter
is so unstable under small changes of the distribution that this effect
cannot be taken very seriously.)

The sensitivity of classical procedures to longtailedness is typical and
not limited to this example. As a consequence “distributionally robust”
and “outlier resistant,” although conceptually distinct, are practically syn-
onymous notions. Any reasonable, formal or informal, procedure for
rejecting outliers will prevent the worst,

We might therefore ask whether robust procedures are needed at alil;
perhaps a two-step approach would suffice:

(1) First clean the data by applying some rule for outlier rejection.

(2) Then use classical estimation and testing procedures on the re-
mainder.

Would these steps do the same job in a simpler way?
Unfortunately they will not, for the following reasons:

(1) It is rarely possible to separate the two steps cleanly; for instance,
in multiparameter regression problems outliers are difficult to re-
cognize unless we have reliable, robust estimates for the parame-
ters,

(2) Even if the original batch of observations consists of normal
observations interspersed with some gross errors, the cleaned data
will not be normal (there will be statistical errors of both kinds,
false rejections and false retentions), and the situation is even worse
when the original batch derives from a genuine nonnormal distribu-
tion, instead of from a gross-error framework. Therefore the classi-
cal normal theory is not applicable to cleaned samples, and the
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actual performance of such a two-step procedure may be more
difficult to work out than that of a straight robust procedure.

(3) It is an empirical fact that the best rejection procedures do not
quite reach the performance of the best robust procedures. The
latter apparently are superior because they can make a smooth
transition between full acceptance and full rejection of an observa-
tion.

1.2 WHAT SHOULD A ROBUST PROCEDURE
ACHIEVE?

We are adopting what might be called an “applied parametric viewpoint”:
we have a parametric model, which hopefully is a good approximation to
the true underlying situation, but we cannot and do not assume that it is
exactly correct. Therefore any statistical procedure should possess the
following desirable features:

(1) It should have a reasonably good (optimal or nearly optimal)
efficiency at the assumed model.

(2) It should be robust in the sense that small deviations from the
model assumptions should impair the performance only slightly,
that is, the latter (described, say, in terms of the asymptotic
variance of an estimate, or of the level and power of a test) should
be close to the nominal value calculated at the model.

(3) Somewhat larger deviations from the model should not cause a
catastrophe.

If asymptotic performance criteria are used, some care is needed. In
particular, the convergence should be uniform over a neighborhood of the
model, or there should be at least a one-sided uniform bound, because
otherwise we cannot guarantee robustness for any finite n, no matter how
large n is. This point has often been overlooked in the past.

It should be emphasized once more that the occurrence of gross errors in
a small fraction of the observations is to be regarded as a small deviation,
and that, in view of the extreme sensitivity of some classical procedures, a
primary goal of robust procedures is to safeguard against gross errors.

The literature contains many other explicit and implicit goals for robust
procedures, for example, high asymptotic relative efficiency (relative to
some classical reference procedures), or high absolute efficiency, and this
either for completely arbitrary (sufficiently smooth) underlying distribu-
tions, or for a specific parametric family.



