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PREFACE

The following examples to extremum and var-
tational principles in mechanics were delivered in a
seminar which accompanied a lecture course of Profes
sor Horst LIPPMANN, Brunswick. Therefore, the exam-
ples cannot stand for themselves, their main function
was to Lllustrate the results of the lecture course
and to demonstrate several interesting peculiarities

of the single solution methods.

The problems are normally chosen to be
quite simple so that numerical computations are not
necessary. Nevertheless, sometimes, the calculations

will only be mentioned and not worked out here.

The sectione of the seminar—-course are not
identical with those of the lecture course. Especial-
ly, there are no examples to more or less theoretical
sections of the lectures. Because of the close connec
tion to the lectures, no separate list of references
18 given. Also the denotation is mostly the same as

in the lecture-notes.

I say many thanks to Professor Horst LIPP-
MANN for his help during the preparation-time and to
the International Centre for Mechanical Sciences for

the invitation to deliver this seminar.

Brunswick, October 3I, I970

Dieter Besdo






1. EXTREMA AND STATIONARITIES OF FUNCTIONS

1.1. Simple problems (.f sect. 1.2 of the lecture -notes)

In this sub-section, several simple problems have to
demonstrate definite peculiarities which may occur if we want

to calculate extrema of functions.

Problem 1.1. -1 : Given a function f in an unlimited region :

fF=10x +12x*+12y%- 3 x? - szg- Iy’ - 3g5.

Find out the extrema.

This problem has to illustrate the application of the
necessary and the sufficient conditions for extrema of func-
tions.

At first, we see that f is not bounded :

If y=0 and % tends to infinity we see :

X —= +00 f—> - ,

X —» - @ . f — 4+ oo
Thus, there is no absolute extremum.,

To find out relative extrema, we have to use the de-

rivatives
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af af D2 f
=2 . ¢ s 9T = :
Fu dx Y y Fxy dxdy ’
. 'f PR
»xxX axa > Yy agz

Fe= 10 + 24% - 9x?- 183y - 9y,
f, = 2by -8x® - 18xy - 9y®,
F:xx’ 24 - 18 (3‘-*"4) 5

Fmé= -18(x+y),

F’w' 24 - 1B (x+y) .

Necessary condition for an extremum of a continually

differentiable function is stationarity :

This yields the two points :

~

%, - % s U,= 15f26 5 F,o= 72572,
3
8

~

x2=-

~

s U, = 1/26 5 F,=-139/T2.



Character of Stationarities 7

But we do not know whether these points represent rel

ative extrema., We examine the matrix

(a5
~
-
V'T'l
®
=

)xu

F’x% F’!‘#

, taken at x=§c,g=§,F=?.

(o)
HN

If it is positive or negative definite we have a minimum
or a maximum resp., if it is positive or negative semidefinite
we possibly may have a minimum or maximum resp., but then
we cannot be sure. If sz/ dx® is not semidefinite we have no

extremum but a saddle-point. Applying this we see :

point 1 <822>= -8 30 = A
%" /, -30 -6

We check the definiteness by a direct method. We in-
troduce the vector 7 = (oc ﬁ) » then q =17 A< N> 1is ex-

amined :
g, = qA1<q>=—6(a2+ﬁ)2>—60aﬁ.
We see :
g, = -T2 if o= =1,
g, = + 48 if o=-H =1,

A, is not definite or semidefinite: point 1 is a saddle-

point.



8 l.Extrema and Stationarities of Functions

2 30 6
point 2 <a F2> = = A, .
2

This yields
g, = qAr<n>=24(a?+p?)+6(0n+p)>0 if =0 or p=0,

Hence, Az is positive definite, point 2 represents a

relative minimum.

The function ¥ has only one minimum and no maximum.
This is possible if it has the form which is sketched in Fig.
1.1.-1.




Boundary-Extrema 9

Problem 1.1-2: Given the function f = 3 %%+ & gz + 2t

declaired in the region G where 2 x2+y’+2:-1=<0
g g Y

(unit sphere), calculate the extrema, also boundary-extrema.

This problem has to show the curious effect that ex-
trema can be lost if we are not careful enough when calculat-
ing extrema on boundaries.

First we try to find out extrema in the interior of the

region G :

fo=6x; f =8y, f =22.

]
N2
n
-l
(]
o

Hence, F,xia 0 leadsto X =Y

Because of £ 2 0 this must be a minimum. There is
no second extremum in the interior.

Inside of G, f is bounded. So there must be a maxi-
mum on the boundary.

The boundary is described by g = 0. Therefore,
2% =1 -x%- \42 can be put into f instead of 2%, So we get

B B
the function f as a function § = F(x,g) which is valid on the

boundary :
® 2 2
Fed+2x"+3y
B B B
fF .= Fag= 0 vyields 3(; =y=0, f=Ff=1 which is a mini-

mum of ¥ and, therefore, cannot be a maximum
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of ¥F.
Two questions arise now :
1. Is 3(,=14=1, fF =1 , 2= *1 a minimum of the
function f in G ?
The allowed region is given by ¢ = 0 . Thus, the
gradient grad. g represents a vector directed towards the out-

side of G . Then

(grad f)- (grad gq) E 0

is a necessary condition for a minimum or a maximum on the

boundary.

(g_rad. £)- (grad g) z 0 at a special point X;
is sufficient, if there is a minimum or maximum, resp., on

the boundary.

(grad. g) - (grad F) = 12x*+ 16y’ + 42°> 0

shows that we can find out only maxima on the boundary.

2. We have found out only two stationary points on the boundary.
They did not represent maxima. But there must be a maxi-
mum. It seems to be lost. What is the reason?

We have lost the maximum because of the followibng

mistake which we made : When establishing the function £,

we did not notice that z? must be positive. This would have
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B
lead to the new boundary condition for f :

2

B 2
g=x +g—1s0.

We see : the elimination of variables, especially of
squared ones, may be dangerous.

The other way for the calculation of the stationarities
of f on the boundary is the use of LAGRANGIANmultipliers.
The problem : f ==3> stationary under the side-condition

g = 0, can be expressed as
h(:)c&,}‘.) =3x*+ by®+ 2%+
+ A (x®+ 92+zz“1)‘-=s’> stationary

This method yields each stationary point on the bound
ary which, then, can be checked, whether it is an extremum .

h ==> stationary yields the conditions :

6% + 2A% =0 or (6+2A)%=0 (1)
8y + 2A3 =0 or (8+2X)§ =0 (2)
2% + 2A% =0 or (2+2A) =0 (3)

X2+ yrezi=, (4)

Eq. (1) postulates X =0 or A=-3
Eq. (2) yields =0 or A=-2, and
Eq. (3) leads to Z=0 or A=
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X + 0 is pos=zible if ;. =-3 but then we must have
g =2=0, X=%*1 (from eq. (4)). In the same way we get :
Q*O leads to % =% =0 | g=t1,
zZ + 0 brings out 5Vc=§=0,§=t4.

These are points of stationarity on the boundary.

The examination of their extremum properties shows

that the points

~

X =% =0, Y=t1, F=t

represent the (absolute) maxima of f in G .

Problem 1.1-3: We have a given plate of sheet metal and we
want to produce with it a fixed number of tin-boxes. Calculate
the optimum relation between the height h and the radius r of

the tin boxes, if the volume of the boxes is to be maximized.

This simple problem was used as an additional problem
to demonstrate the advantage of LAGRANGE-multipliers.
The volume
V=r1rh

(r = radius, h = height) has to be a maximum. On the other

hand, the surface area of the plate per box
9 =2mrh + ymr?® (y =2)

is a given value. The quantity ¥ is introduced, because differ
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13

ent cases will be examined : ideally no falling-off leads to
Y = 2, falling-off as sketched in Fig. 1.1-2 belongs to

Y = 2.20, realistic values of ¥ may be 2. 30 to 2. 60.

black: falling-off

—

Fig. 1.1-2

The problem is fixed now :

V=mr‘h => maximum

under the side-~condition

g =2nrh + yari-5=0.

This leads to H (r,h,A) being
H(r,h,A) = tr’h -

~A(2Znrh + ymri-95) ==

stationary
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Hence, we get

(1) Fh-Ah -AyF=0,
(2) Fi-oA2r =0,
(3) 2nFh + yRF2I-6 =0

Y
Eq. (2) yields : A = 12-F .
(

Putting this A into eq. (1), we reach

~~_l~"‘-__1_ ~z=-1_~"‘- rv2=_1_~~_~=
Fh-—TFh-—yr 2(r‘h Yr) 2r(h yr)=0
or: ¥=0 or h=ryF.
¥ = 0 cannot be a maximum of V (V =0). There

~

fore, h : r = ¥ must be the desired result. The ideal tin-box

has the form sketched in Fig. 1.1-3(y = 2 5 ). Eq. (3) can

be used for the determination of r , h as functions of S :

2yTPi 4 YT =5,

Y - T S Ve &
r dym ’ " 3

Fig. 1.1-3




1.2. Linear programming _ (no correspondence to the lectures)
In a lot of problems where a minimum or a maximum
has to be calculated, the equations describing the boundaries
and the functions which have to be optimized, are linear in
their variables. Then, the method of "Linear Programming"
can be applied. We will derive the theory by use of a simple
example. Later on, this method will be applied for the calcula-

tion of the load-carrying capacity.

Problem 1.2-1 : A farmer has 100 ha (German unit of

measurement, 1 ha = 10, 000 mz) grounds on which he wants

to cultivate four types of fruits (I to IV) in order to reach max-
imal profit. For this purpose, he has to use different means
which are restricted : his capital and the working-time are not
infinite. Further on, he has to use two machines A and B
which he has to lend. This is possible for restricted times
only.

We assume that costs and times depend linearly on the
area which is cultivated with a special fruit. Also the profit
(where all costs are subtracted already) is to be a linear func-
tion of the parts of the grounds cultivated with the different

fruits. Then, the theory of linear programming can be applied.

Two problems will be handled :

a) Only two fruits (I and IV) are taken into account. Then, the
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two distributions of the profit &) and ]5) will be compared
(cf. Table 1.2-1).
b) Four fruits are possibly cultivated. The profit-distribution
o) is valid.
The values which are necessary for the calculation

are printed in Table 1.2-1.

Table 1.2-1
) days . Lire
t
' ime [: vy :\for proflt[ T ]
lire
means | money
5
fruits work | machA [machB |case &) case A)
1 20, 000 1 0 1/2 {24,000 (12, 000
11 40, 000 2 1 2 48, 000 -
III 20, 000 3 0 0 36, 000 -
v 30, 000 4 1 0 54, 000|60, 000
restrictions [Lire] [days]
for the
sums: 2,750, 000 230 50 75

a) Two fruits (I and IV), profit given by «) and })

The restrictions of the means lead to necessary con-
ditions for every solution, given in Table 1.2-2 (x= X,= num-

ber of ha's cultivated by fruitl, y = x E) .



