AN W B i TGV s

Hong Jis-wei

Computation: Computability,
Similarity and Duality



Hong Jia-wei
Beijing Computer Institute, China

Computation: Computablhty,
Similarity and Duality

Pitman, LLondon

John Wiley & Sons, Inc., new 1ork, 1oronw




ARR

ot

PITMAN PUBLISHING LIMITED
128 Long Acre, London WC2E 9AN

A Longman Group Company
© Hong Jia-wei 1986
First published 1986

Available in the Western Hemisphere from
John Wiley & Sons, Inc.
605 Third Avenue, New York, NY 10158

ISSN 0268-7534

British Library Cataloguing in Publication Data

Hong, Jia-wei
Computation: computability, similarity
and duality.
1. Computer arithmetic
I. Title
'519.4'028'5 QA76.9.C62

ISBN 0-273-08720-7

Library of Congress Cataloging in Publication Data
ISBN 0-470-20387-0

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the publishers.
This book may not be lent, resold, hired out or otherwjse disposed
of by way of trade in any form of binding or cover other ‘than that
in which it is published, without the prior consent of the publishers.

Reproduced and printed by photolithography
in Gredt Britain by Biddles Ltd, Guildford



Preface

Computation is one of the oldest as well as one of the newest topics. Among
the vast amounts of literature about computation, this book will find its
own way to unify computational models and develop TuFing-Church's thesis
further.

This book composed of three parts. Part 1 (Chapters 1, 2 and 3) is a
brief self-contained review, which discusses finite automata and classical
computability theory. The material selected is as basic as possible, and
the proof as simple as possible. The reader who is familiar with these
materials can go to Part 2 directly.

Part 2 consists of Chapters 4, 5, 6 and 7. In Chapter 4, multitape
Turing machines (TM) and computational complexities are introduced to the
reader. In Chapters 5 and 6, random access machines (RAM) and vector
machines (VM) are discussed, and their sihi]arity with TM is proved. These
three models are developed in full so that senior students and junior grad-
uate students can understand the similarity theory for deterministic comput-
ational models. Chapter 7 provides three moré parallel computational models
which are proved to be similar to TM. Another four models and further.
-deve]opments\are given in the exercises and remarks. '

Part 3 con§jsts of Chapters 8, 9 and 10. Chapters 8 and 9 are intended
to unify various computational types. Espeéia]]y non-deterministic, alter-
nating, majority, and random types, and their relations are considered. In
Chapter 10, the éuality between parallel time and space is discussed. This
part can be treated as a separate text for further reading by graduate
students. \ ‘

This book is se]*-containkd, but readers are recommended to complete thek
exercises in order t& understand the text better.

The outline for tﬁﬁs book was reported as a lecture at the 21st FOCS
Symposium in 1980, enﬁjt]ed "On Similarity and Duality &f Computation",
based mainly on work I ‘had done when I was visiting Torohto. Many valuable
ideas were suggested by\my friends A. Borodin, S. Cook, b. Dymond and C.
Rackoff. 1In 1982, I wrote a lecture of 11 chapters for a theoretical seminar.
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in Beijing Computer Institdte aﬁd,-ih 1983, wrote a clearer version with the

great help of S.W. Tang, for a summer school in Beijing. In 1985, I wrote it
once again for Research Notes in Theoretical Computer Science, with continual
encouragement from R. Book and A. Rosenberg, and helped by S.W. Tang, H.A.t(

Wang and X.F. Liu. I would Tike to thank them all faithfully.

Hong, Jia-wei
Beijing Computer Iﬁstitute,
China
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Preliminaries

I. NOTATION

In this book, sets are denoted by capital letters, while its elements are
denoted by lower-case letters. The total number of elements in set A is
dencted by [A|. @ is the null set. v

The union, intersection and difference of two sets are represented by
U, N and - respectively.

AUB = {x|x €AorxE€ B},
AnB={x|x € Aand x € B},
A - B = {x|{x € Aand x € B}.

Notation A < B means that A is a subset of B, while A = B means A < B -and
B-A + Q.
The Cartesian product of A and B are defined by

AxB=1{(a,b)la €A, beB}

1 A

Define A° = A, An+1 = A" % A, Use 2" to represent the power set of A:

2" = (8B < A).

Use AB to represent the set of all mappings from B to A.

A relation R on set A is a subset of A x A. For two elements, a,b € A,
that a and b have relation R means (a,b) € R, denoted by aRb.

The positive closure R" of a relation R is a relation defined by: aR'b if
and only if there are a = Ays Apse.e5d = b (n 2 2) such that aiRai+1
(i = 1;2,¢..,n—1). The closure R* of relation R is defined by: aR*b if
a = b or aR'b. ‘

For any real number x, |x] is the unique integer satisfying [xj<x < |[x[+1.
[x] is the unique integer satisfying [x] - 1 < x < [x]. The meaning of [x]
is the same as |x].



I1T1. ALPHABET AND LANGUAGE

An alphabet is a finite set, whose elements are called the symbols. Suppose
that I is an alphabet. A string of a finite number (including 0) of symbols
from I is a word over I. The word of length 0 is called the null word,
denoted by A. The null word A is not a symbol in an a]phabet but a string
having no symbol, a word (empty word) over any alphabet. The set of all
words in alphabet I will be denoted by I*. For example, if I = {a,b}: then
1* = {A,a,b,aa,ab,ba,bb,aaa,...}.

Suppose that x = aja,...3, and y= b1b2...bm are two words in alphabet I.
Then the word w = xy = 33,...2, b1b2...bm is ca]led the concatenation of x
and y. Obviously, we have

(1) (xy)z = x(yz)  x,y,z € 1"

(2) Ax = xi = x X € I*.

If xy = z, then x is a prefix of z, and y is a suffix of z. Further, if ~
we have y+ 1\ (or x # A), then x (or y) is a proper prefix (proper suffix).

If xyz = w, then y is a subword of w. If we have y ¥+ A-and y + w then 'y
is a proper subword of w.

Suppose that x = a,35...3, (a; € I,1i=1,2,...,n), then a,...253, is

.i
the reversed word of x, denoted by x' .

Let x be a word, n 2 0. Define

Obviously we have

(1) xMxm o (x € I*, n,mz2 0)

nm
X

—
N
~
—
x
=
~
3
]

(x € 1, n,m 2 0).

A subset of I* is called a language over I.

Suppose that L1 and L2 are two languages over I. Define language
L=1L,L, = {xy|x € Ly» ¥ € L2}

to be the concatenation of L1 and L2. Ooviously we have
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(1) (L1-L2)-L3 = L1-(L2-L3).
(2) {AYeL = L-{A} = L..
{3) P-L=LDp=2p

(4) (L v Ly)eL = LysL U Lyel

"

u LZ) LeLy U L-LZ. -

Thus {A} and @ are essentially different. Furthermore, they are different
from s » the blank symbol.

Suppose that L is a language over I, n 2 0, Define

LY = {A}
Ln+1 - Ln-L
=y "
n=0
"= v "
' n=1

L* is the Kleene closure of L. L' is the positive Kleene closure of L.
Obviously we have

Therefore §* = {A} but §* = . _
In the following we denote {w}* as w*, and Wi as w'.

111, GRAPH

Supposé that V,E are finite sets and for every e € E there corresponds:a
unique (u,v) € V x V, Then G = (V,E) is a directed graph. The elements in
V are called the vertices. The elements in E are called the edges. If
{u,v) € V x V corresponds to e € E, then u is the start poiﬁt of e, and v is
the end point of e. -
The number of edges that have v as start (end) point is the fan-out
(fan-in) number. A word P = e,...e  over E satisfying that the end point of



e, is the start point of e1+1(i = 1,2,...,n-1), is called a path in the graph.
The path is of length n. A path of length 0 is called a null path. Thus for
every vertex v there is a null path from v to v. A non-null path having the’
same start point and end point is a cycle.

Suppose that G is a directed graph, I is a set, f is a mapping from E to I.
Then (G,f) is an edge-assignment directed graph. f is called the assignment -
mapping. For e € £, f(e) is the assignment of e. Sometimes, G can be
referred to as an [ assignment directed graph. The assignmenf of a path
P =ese,...e is defined to be f(P) = f(el)f(ez)...f(en), which is a word
over I,

Reversing the direction of all edges in a directed graph G, a new directed
graph is obtained, the reversed graph 6", If G is anl assignment graph;
every edge in G keeps the original assignment. Obviously, P is a path in G
if P is a path in G".

For each vertex in a directed graph, the set

L{v) = {u|(v,u) € E}

is called the adjacency list of G.

For G = (V,E),.V = {v1,v .,vn}, the following matrix

pres

1 e 3y

-
Az e

a ves
an

nt n

where

J

{1’ (Vi,V-)GE
Q, (vi,vj) € E

is called the adjacency matrix of G. :

The edge set of a directed graph is in fact a relation of V. If the
relationship is symmetric, i.e., (u,v) € E iff (v,u) € E, then the graph is
an undirected graph.



Part one
Finite automata and computabnhty

1 Finite automata

§1. DETERMINISTIC FINITE AUTOMATA

A deterministic finite automaton is a mechanism with a finite number of inner
states. When it receives an input symbol it will respond with an output
symbol and change to another state according to the current state and input
‘symbol. - -

DEFINITION 1.1 A determinisitc finite automaton (DFA) is a 7-tuple:

= (QeI:Uad’O:qan)
where

a finite set of ihner states;

a finite set, the input alphabet;

is a finite set, the output aiphabet; ' |
is a mapping from Q x I to Q, the state transition. function;
mapping from Q x I to U, the output function;

9% €-Q, the initia]’state: -

F < Q, the set of final states.

is
is

o C RO

is

Q
-1

'Informél1y, a DFA has an FC,van input tape and an output tape. The FC,
controlling a read head and a write head, is always in.some state q € Q at
any moment. The input tape and output tape’ are divided 1nto many squares,
each can store one symbol from [ or U,

In1t1a11y, the FC is in the initial state Gy The input. stored on the
input tape, is a string (3132"‘an) of symbo1s in' I where a, is the first
input symbol; an empty word is on the output tape, i.e. all the squares on
output tape are filled with blanks., The read head is pointing'to the left-
most input symbol. ‘According to the current inner state»q0 and the SymbolA
a, scanned by the read head, the FC controls the write tape-head to output a
symbo1 b1 = o(q s3, ) in the scanned square, enters a new state qq = é(qo,a )
and the read/wr1te heads automatically move one square to the right. Then,

-



the DFA repeats the above process until all the input symbols have been

treated, Finally, the FC enters a state a, and produces an output word
bxb2"'bn where '

b )

o1 = 0l85534,,

q G(Qi’a' Y1 =0,1,2,...,n-1,

i1 5 P41

For éoﬁVenience, we extend the domain of o and & from Q x I to_Q X I*:
5(g,2) = au}
6(q,wa) = §(8(q,w),a),
o(g,h) = A,
o(q,wa) = olq,w)o(s(q,w),a), where q € Q, w € 1*, a € 1.

For any given w € 1 if S(qo,w) € F, we say that the DFA accepts the
input word w; otherwise, the DFA rejects the input word w.

For a simple DFA, we have an intuitive expression, thz state-transition
diagram. The diagram is a directed graph whose vertices correspond to the
states of the DFA, For q € Q, a € I, if §(g,a) = q', o(g,a) = b, then there
is an arc labelled a(b) from state-q to state q' in the tramsition diagram.
The initial state is generally indicated by an arrow.

When a DFA is used as a transducer, we often set F = ¢ (or F = Q). Thus,
as a transducer a DFA can be described by a 6-tuple (Q,I;U,s,c,qo).

The language accepted by M is defined by

L(M) = {w € 1"|5(q,,w) € Fl.
When a DFA is used as an accepter, we usually only write
M = (Q’ISG’QOSF)'

Then the DFA is a 5-tuple, and the arcs of its sfate transition diagram are
labelled only by symbols from I.
§2. NON-~DETERMINISTIC FINITE AUTOMATA

In the previous section, the language accepted by a DFA is the set

6




{we€ I*lthere is a path from 9% to some q € F whose assignment is w}.
(2.1)
For each q € Q and each a € I, &(q,a) is unique,
Now we reduce the 1imits so that for each q € Q and each a € I there may
be a finite number, perhaps zero, of arcs labelled a out from state g, We
also specify one initial vertex 9 and one accepting vertex set F, and

define the language this graph accepts by (2.1). Thus, we get a new kind
of language accepter.

DEFINITION 2.1 A non-deterministic finite automaton (NDFA) is a S5-tuple,

M= (Q,I ,6,q0,F), where Q,I,F and 9 have the same meaning as for a DFA,
but & is a mapping from Q x I to 20,
The function & can be extended to a mabping from Q x I* to ZQ:

s(aq,n) = {q},

8(g,wa) = U s(p,a) (gq€eQ, we 1", a€l),
pes(q,w) .

and also can be extended to arguments in ZQ x I* as follows:

5(s,a) = U 8(q,a) (se2% aer) (2.2)
q€es ' . ,
8(S,n) = S,

s(swa) = s(s(S,w)a) (s ey, we It ae ).
The language accepted by M is:

L(M) = {wE€ I*[é(qo,w) nNF+P)

THEOREM 2.1  For each NDFA with k states, there exists an equivalent DFA with

R . . » N
2" states. By 'equivalent', it is meant that they both accept the same
language. : '

Proof: Tet M = (Q,I,s,qo,F) be an NDFA. Construct a DFA as follows:

M' = -(ZQ,I,(S’,{QO},FI),.



where
Fro=1(se2qsnrs+apl,

§'(S,a) = u &(g,a).
qes
According to formula (2.2), the function &' is exactly the extension of
the function §, that is,

§'(S,a) = &8(S,a) (S € ZQ, a€l).
But ' , *

WEL(M') — 6'({q0},w)€F' - 6({q0},w)€F' > 6(q°,w) €EF' 6(q0,w)
: ¢
NF £ @ < wel(M).

Thus L(M') = L(M).
Obviously, M' has 2k states, where k = |Q].

The model of the non-deterministic finite automaton can be extended to
allow transitions on the empty input A,

DEFINITION 2.2 In Definition 2.1, if the function § is a mapping from

Q x (1 u {A}) to 2Q instead of a mapping from Q x I to 20, then we call M

a non-deterministic finite automaton with A-moves, an NDFA with A-moves for
short.

iEEOREM 2.2 For each NDFA with A-moves, there is an equivalent NDFA without
A-moves. .

Proof: let M = (Q,I,s,qd;F) ha an NDFA with A-moves. For each q € Q, we
define the A-FLUSURE of q as follows:

¢, (q) = {p €g6|there is a path with assignment A from q to p}.

For each S < Q, define the A-CLOSURE of S as

€,(S) = u C,(q).
A g€s A



Now define the map &' from Q x I to ZQ as follows
For each q € Q and a € I, &8'(qg,a) = S(CA(q),a).

Obviously,
p € 8'(q,a) <> there is a path with a sequence ¢of assignments A and
finally an assignment a from g to p in M. ' (2.3)"

Again, define

i

F' {qlCA(q) nNFE+ ¢} . (2.4)

M= (Q,1,6",a,F").

Thus M' is an NDFA, which accepts L(M).

§3 REGULAR LANGUAGE AND REGULAR EXPRESSION

DEFINITION 3.1 Let L be a language over the alphabet I. If L can be
expressed with @, {A} , and {a}(a € I) through a finite number of operatiohs
of union U, concatenation, and Kleene closure *, ther we call the language

L a'reguTar language (regular set).

DEFINITION 3.2 iet I be an alphabet not containing the symbols (,), @,A,
*
+, «, and .

(1) pis a reQu]ar expression, denoting the languige @. A is a regu]af
_ expression, denoting the language {A} . For each a €1, a is a regular
expression, denoting the language {a}.
(2) If r and s are regular expressions demoting the languages R and S,
respectively, then (r+s), (r.s), and r* are regular exressions denoting the
languages R U S, R-S, and R*, respectively.
" (3) Nothing else is a regular expression.

When no confusion is possible, some parentheses canbe omitted. From
here on, the language described by a regular expressioi r is denoted by L(r).
Given a regular expression r, we use r* instead of r-r'. Obviously, L(r*) =
L(r)f. The languages described by the regular expressions are regular, and
~vice versa. ’



