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Preface

Adaptive grid methods are among the most important classes of numerical methods
for partial differential equations that arise from scientific and engineering computing.
The study of this type of methods has been very active in recent years for algorithm
design, theoretical analysis and applications to practical computations. This volume
contains a number of self-contained articles for adaptive finite element and finite dif-
ference methods, which is aimed to provide some introduction materials for graduate

students and junior researchers and a collection of references for researchers and
practitioners. |

These articles mostly grew out of the lectures notes that were given in Summer
Workshops on Adaptive Method, Theory and Application organized by Tao Tang, Jin-
chao Xu and Pingwen Zhang in Peking University, China, during June 20 — August
20, 2005. This summer school was aimed to provide a comprehensive and up-to-date
presentation of modern theories and practical applications for adaptive computations.
The main lecturers of the Summer School include Weizhang Huang of University of
Kansas, Natalia Kopteva of University of Limerick, Zhiping Li of Peking University,
John Mackenzie of Strathclyde University, Jinchao Xu of Penn State University, Paul
Zegeling of Utrecht University, and Zhimin Zhang of Wayne State University. Other
lecturers include Tao Tang, Xiaoping Wang of HKUST, Huazhong Tang and Ping-
wen Zhang (both from Peking University). More detailed information of this summer
school can be found in http://ccse.pku.edu.cn/activities/2005/
adapt iveseminar .htm(which is mostin Chinese). This summer school contin-
ued in 2006 but with a more focused program (see http://ccse.pku.edu.cn/

06summerschool/school.html) and it is expected to continue more in the coming
years.

The articles in this volume, which are ordered alphabetically by authors, touch
upon various aspects of adaptive methods for algorithmic design, theoretical analy-
sis and practical applications. Chapter 1, by Long Chen and Jinchao Xu, summarizes
the basic techniques in local adaptive finite element methods and especially the recent
advancements on the convergence and complexity of this type of adaptive methods.
Chapter 2, again by Long Chen and Jinchao Xu, describes various postprocessing
techniques for gradient recovery that include results on patch symmetric grids, mildly
structured grids and general unstructured grids. Chapter 3, by Weichang Huang, cov-



il Preface
ers topics on adaptive algorithms for anisotropic meshes and their theoretical foun-
dations, including basic mathematical principles of mesh adaptation, anisotropic in-
terpolation theory, monitor functions, variational mesh generation, and moving mesh
methods. Chapter 4, by Natalia Kopteva, provides a rigorous theoretical analysis on
the convergence of moving grid methods for a special class of convection-dominated
convection-diffusion problem. Chapter 5, by Zhiping Li, presents a special adap-
tive grid method, the mesh transformation method, with applications to computation
of crystalline and microstructures. Chapter 6, by J.A. Mackenzie and W.R. Mekwi,
focuses on moving mesh methods which employ a moving mesh partial differen-
tial equation (MMPDE) to evolve the mesh in an appropriate fashion. Chapter 7,
by P. A. Zegeling, presents moving grid methods with a summary of many ideas
and techniques and applications to reaction-diffusion systems, tumour angiogenesis
models, brine transport and magneto-hydrodynamics. Chapter 8, by Zhimin Zhang,
discusses two post-processing methods that are instrumental for adaptive finite ele-
ment methods: the Zienkiewicz-Zhu Superconvergence Patch Recovery (SPR) and
recently proposed Polynomial Preserving Recovery (PPR).

It is our great pleasure as editors to thank all of the authors for their hard work
to provide us with these high quality articles. We are very grateful for the generous
financial supports provided by National Science Foundation of China, The Mathe-
matics Center of Ministry of Education of China, School of Mathematical Sciences
of Peking University, and the Joint Research Institute for Applied Mathematics be-
tween Peking University and Hong Kong Baptist University. We would like to thank
Pingwen Zhang from Peking university for his leadership in helping organize the
summer activities in Peking University. We would also like to thank Tammy Lam of

Hong Kong Baptist University for the considerable work she put into producing the
final layout of the proceedings.

Tao Tang
Hong Kong Baptist University
Jinchao Xu

Pennsylvania State University
October, 2006
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Adaptive methods are now widely used in the scientific computation to achieve
better accuracy with minimum degree of freedom. While these methods have been
shown to be very successful, the theory ensuring the convergence of the algorithm and
the advantages over non-adaptive methods 1s still under development. In this chapter,
we shall survey recent progress on the convergence analysis of adaptive finite element
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methods (AFEMs) for second order elliptic partial differential equations {2,11,25,32,
40].

To present the main idea and techniques in their simplest form we restrict our-
selves to the linear finite element approximation to the model Poisson equation

~Au=fin§, and u = 0 on 0f2, (1.0.1)

posed on a polygonal domain ) C R?. We shall prove that there exists an algorithm

through the local refinement of triangulations to produce a sequence of approxima-
tions of u in an optimal way.

1.1 Introduction

Let D C R™ be a bounded domain. For an integer k > 0, and 1 < p < oo, W*P(D)

will denote the usual Soblev spaces of functions having distributional derivatives up

to order k in LP. The norm (or semi-norm) is given for 1 < p < oo by ||u||kp.D =

1/ 1/
(Zla\ék IID%H%) ; (or |ulgpp = (Ebal=k HD“’uH?,) JD) with the usual mod-

ification for p = oo. The subscript k, p or D will be omitted if £k = 0, p = 2 or
D = . The closure of C§°(D) with respect to the norm of W*?(D) is denoted
by WeP(D). When k < 0, W*P(D) is defined as the dual space of WAH’I’(D).
Furthermore H*(D) := W*?2(D) and H} (D) := Wg’Z(D) are Hilbert spaces in the
norm | - ||, p or semi-norm | - | p, respectively.

The letter C or ¢, with or without subscript, denote generic constants that may
not be the same at different occurrences. To avoid writing these constants repeatedly,
by z < y we mean that there exist a constant C such that z < Cy. Obviously = 2 ¥y

isdefinedasy < z,and x ~ yasz < y and z 2 y. The letter C; with subscript is
used to denote specific important constants.

Finite element methods

The weak formulation of (1.0.1) is: for a given f € H™!, find u € H}(2) such that
a(u,v) = (f,v) Vv e Hj, (1.1.2)

where a(u,v) = (Vu,Vv) = |, Vu - Vv and (f,v) is the dual pair. In particular

when f € L?, (f,v) = (f,v) = | fv. The Laplace operator can be understood as
the linear operator introduced by the bilinear form a(:, )

~A:H}— H', by (—Au,v)=a(u,v), Vv €& H}.
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By the Poincaré inequality, the bilinear form a(-,-) defines an inner product on V.

The existence and uniqueness of the solution to (1.1.2) follows from Riesz represen-
tation theorem. Moreover from

[uli = au,w) = (f,u) < || fll-1lul,

we have the stability result
ulr < [[fll-1- (1.1.3)

Namely the linear operator A : Hj +— H~1! is an isomorphism and A~ is bounded.
Although A~ is defined on H~1, we will mainly consider its restriction on L? C
H~1. In this case by the regularity theory of elliptic partial differential equations
(c.f., [28]), u = A~Lf is smoother than H! and thus the approximation of u in H'
norm with certain rate is possible.

The finite element method is to find an approximation by solving (1.1.2) in finite-
dimensional subspaces of H}(2) based on triangulations of 2. That is, given an
f € L? tofind au, € V" C Hj such that

a(up,vp) = (f,vn) Yo, € VP (1.1.4)

The existence and uniqueness of the solution to (1.1.4) follows from the Riesz repre-
sentation theorem since V" C H{.

We now discuss the construction of finite element spaces V. A triangulation
7;, (also indicated by mesh or grid) of €2 is a conforming partition of {2 into a set of
triangles. Conforming means the intersection of any two triangles 7, and 72 in 7),
either consists of a common vertex x;, edge E or empty. The interior node (also
indicated by vertices) set and edge set of the triangulation are denoted by Ny, and &,
respectively. The subscript h here represents the mesh size h := max,c7;, diam(r)
where diam(7) denotes the diameter of 7. It is always assumed that there are a family
of triangulations {7}, }ren With h — 0. Properties of triangulations presented below
are assumed to hold uniformly with respect to the whole family.

Throughout this article we shall only consider shape regular triangulations.
{7}, }rer is shape regular if

diam(7)?
max (T) < Oy
T€Th "T‘

where |7 is the area of 7. The shape regularity of triangulations assures that angles
of the triangulation remains bounded away from 0 and 7w which is important to con-
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trol the interpolation error in H! norm [1] and the condition number of the stiffness
matrix [27].

For the simplicity, we shall only consider linear finite element space. Given a
shape regular triangulation 73, of (2, we define

Vh = {'U ] vV C C(ﬁ),’vlag = (0 and ’U‘fr C PI(T)aVT < 771}:

where P;(7) denotes the linecar polynomial space on 7. It is easily to show that
Vh c Hj.
Convergence analysis of finite element methods

Classic convergence analysis of finite element methods are most developed for quasi-

uniform grids. {7} }nc is called quasi-uniform if it is shape regular and furthermore
satisfies the global assumption

ma’X‘TGTh Tl

< Oy.

miﬂq-e’]‘h Tl

Namely all elements of a quasi-uniform grid are around the same size.

For finite element methods there is a natural energy norm defined by the bilinear
form {|u||2 := a(u,w). For this model problem ||ul|, = ||Vu|| = |u|;. The standard
convergence analysis of the finite element methods on quasi-uniform meshes has
three main ingredients.

1. Quasi-optimality of the finite element approximation:

u—uplt & it |u— vl
u—urh S nf fu—oals

In particular, {u — up|1 < |u — ur|1, where uy is the nodal interpolation of
based on 7. Namely u;y € V" and uy(z;) = u(z;) for all z; € Nj,.

2. Interpolation error estimates for u; on quasi-uniform triangulations 7j:

u—urly < hllullz, Vue H”.

3. Regularity result of elliptic equations: when the domain €2 is smooth or convex
and Lipschitz, A=! : L2(Q) — H2(Q) N H}(Q) is a bounded linear operator.
That is

lull2 S A
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Combining 1, 2 and 3, on quasi-uniform triangulations 77, of a nice domain (,
we obtain

u—uplt Slu—urli S hjlull2 S A|F]-

It 1s easy to see the first order convergence is optimal for general function u € H?.
Indeed for u = 22 + y2, one can show the convergence rate cannot be greater than
one. Thus in the full regularity case the uniform refinement of the triangulations will
produce finite element approximations of u in an optimal order.

The regularity result, however, does not hold on general Lipschitz domains. To
see this, let us give a simple counter example. Given § € (0,1), let @ = {(r,8) :
0<r<1,0<6<x/B}andlet f = rPsin(86) and u = (1 — r?)f. Being the
imaginary part of the complex analytic function z!/2, f is harmonic in Q. A direct
calculation shows that

—Au=4(1+06)f in 2, and wulgg =20.

Note that 4(1 + 8)f € L* C L? but u ¢ H?. Furthermore it is easy to see
u € H? for) < s <1+ (. In views of the approximation theory, we cannot expect
approximation rate (in H' norm) better than A” if we insist on quasi-uniform grids.

Equidistribution

To improve the convergence rate, the element size is adapted according to the be-
havior of the solution. In this case, the element size in areas of the domain where
the solution is smooth can stay bounded well away from zero, and thus the global
element size 1s not a good measure of the approximation rate. For this reason, when
the optimality of the convergence rate is concerned, #7, the number of triangles, is
used to measure the approximation rate in the setting of adaptive methods that in-
volve local refinement. 7y is used to denote a triangulation with at most N triangles
which 1s proportional to the number of degree of freedom. Again by default we are
considering a sequence of triangulations {7x}n>n,. Note that N = O(h™2) for
quasi-uniform grids 7;, when h — 0.

The first order convergence of finite element approximation can be recovered
through the correct mesh adaptation. We have the following theorem.

Theorem 1.1. Let v € W%1(Q). Suppose a shape regular triangulation Ty weakly
equidistributes the W1 norm of u in the sense that

C
|’U,|2,1,T < W‘ulziljg, V1 € TN. (115)



6 Chapter 1 Convergence of Adaptive Finite Element Methods

Then the finite element approximation upn based on I is of optimal approximation
order:

u—un|i S N7 V2l . (1.1.6)

Proof Using the embedding: W21(2) ¢ HY(2) N C(2), we know the nodal inter-
polation uy is well defined and

lu —urlr < Cllull2y,,, V7€ 1N.

Since the nodal interpolation preserve linear polynomials, by Bramble-Hilbert lemma,
we have

lu —url1r < Cluj2,1,r, V7 € Tpn.

We emphasis that constants in the above inequalities do not depends on the element 7

since those norms are scaling invariant. Squaring and summing over all the elements,
we get

2 2 -1
lu—url1 S Z ulg1s SN Iul%,l,ﬂ-
TETN

In the last step we have used the equidistribution assumption (1.1.5).

We would like to stress two important points contained in Theorem 1.1. First
we use a weaker norm W 2! of u to obtain the optimal convergence order N~1/2 =
O(h). We still use the second derivative of u but the norm is shifted from L? norm
to a weaker one L!. In general we may need to work on Besov spaces. We refer
the reader to [10, 24, 41] for the definition and properties of Besov space. Here we
only remark that such spaces are function spaces suitable for the theory of nonlinear
approximation by piecewise polynomials. The regularity theory of elliptic partial
differential equation in terms of Besov norms can be found at [3, 4, 20, 21]. It is
shown in those works that the solution to the Poisson’s equation indeed has typically
higher Besov than Sobolev regularity and thus the use of adaptive scheme gives a
better asymptotic approximation rate.

Secondly an idea case of (1.1.5) is the equidistribution principal widely used in

the literature:

1
lule,1,r = J—V-le,1,g, V1 e Ty.

Namely a good mesh adaptation is to equidistribute some local error bound. We
would like to elaborate that, in the current setting, equidistribution is indeed a suffi-
cient condition for optimal error, but by no means this has to be a necessary condition.

Namely the equidistribution principal can be swerely violated but asymptoticly op-
timal error estimates can still be maintained. For example if a bounded number of
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elements satisfy
C
|U|2,1,f < _ﬁluh’l’m

and the rest satisfy (1.1.5), the optimal error estimate (1.1.6) is still valid. This ob-
servation leads a better marking strategy discussed later.

We shall show the existence of practical algorithms to generate triangulations
satisfying (1.1.5). If u is known and a little bit smoother than W2, then there are
algorithms [35, 11] which can produce such equidistributed triangulation in a nearly
optimal way. As an example we present a result below and we refer the reader to (5]
for the proof. Recall that a function f € Llog™ L(Q) if [, |f log|f|| < oc.

Theorem 1.2. If D*u € Llog™ L(Q) and |ul21.+ can be evaluate exactly, then

there exists an algorithm to generate a triangulation Iy with N elements satisfying
(1.1.5).

Those algorithms, however, cannot apply directly to the numerical solution of
partial differential equations since the solution u 18 unknown.

Adaptive finite element methods

We now briefly review the main idea of adaptive finite element methods through local
refinement. Given an initial triangulation 7p, we shall generate a sequence of nested
conforming triangulations 7 using the following loop

SOLVE — ESTIMATE — MARK — REFINE. (1.1.7)

More precisely to get Ty 1 from 73 we first solve (1.1.4) to get ug on 7. The error
is estimated using u; and used to mark a set of triangles of 7 that are to be refined.

Triangles are refined in such a way that the triangulation is still shape regular and
conforming.

We shall not discuss the step SOLVE which deserves a separate investigation.
We assume that the solutions of the finite dimensional problems can be solved to
any accuracy efficiently. Examples of such optimal solvers are multigrid method or
multigrid-based preconditioned conjugate gradient method [14,29,43,44].

The a posteriori error estimators are essential part of the ESTIMATE step. To
obtain information of the error, we need a posteriori error estimator = POSTE-
RIORI (7}, un, f,a(-,-)). Here POSTERIORK(T},, uy, f,a(:,-)) can be thought of
as a subroutine which returns a quantity 7 based on the current triangulation 73, the
finite element approximation u; on 7, the data f and possibly the bilinear form
a(-,-). One may want to approximate the local error bound |u|21 - in Theorem 1.1
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by |unl|2,1,-. But for piecewise linear function |up|21, = O for any 7 € 7;. On
the other hand, roughly speaking, the derivative of a piecewise constant function is
the delta function on edges with the magnitude of the difference of the values in the
elements sharing that edge. More precisely for each interior edge E € &, we fix a
normal vector ng. Let 7 and 7 be two triangles sharing the edge E such that ng is
the outward normal vector of E in 7. We define the jump of flux across F as

Ouh
T 8?’1]_:;

8uh] - Ouy,

Je(up) := [E)Z;;

" Ong 7

We shall prove such quantity, read as a discrete version of |u|2 1 ~, will be crucial in
the a posteriori error estimator. The lost information going from u to uy, will be
captured by the data.

The a posteriori error estimators are usually split into local error indicators and
they are then employed to make local modifications by dividing the elements whose
error indicator 1s large and possibly coarsening the elements whose error indicator
is small. The way we mark these triangles influences the efficiency of the adaptive

algorithm. The traditional maximum marking strategy is to mark triangulations 7*
such that

N~ = @ maxn,, forsome & € (0,1).
T7€TH
This marking strategy is proposed in the pioneering work of BabusSka and Vogelius
[2]. Such marking strategy is designed to evenly distribute the error. Based our
relaxation of the equidistribution principal, we may leave some exceptional elements
and focus on the overall amounts of the error. This leads to the bulk criterion firstly
proposed by Dorfler [25] in order to prove the convergence of the local refinement
strategy. With such strategy, one defines the marking set A such that

Z N = sz, for some @ € (0, 1).
TeM TET

We shall always use this marking strategy in the MARK step.

In the REFINE step, we need to carefully choose the rule for dividing the marked
triangles such that the mesh obtained by this dividing rule is still conforming and
shape regular. Such refinement rules include red and green refinement {6], longest
refinement [36, 37] and newest vertex bisection [39]. In addition we also would like
to control the number of elements added to ensure the optimality of the refinement.
To this end we shall use newest vertex bisection in this article and briefly mention



