CHAC

FRACTA
DYNA M

An Introduction for

CH //é\w \N\C

AND

€S

Applled Scientists cnd Englneers

Francis C. Moon



CHAOTIC AND
FRACTAL DYNAMICS

An Introduction for
Applied Scientists and Engineers

FRANCIS C. MOON

Mechanical and Aerospace Engineering
Cornell University
Ithaca, New York

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.

New York - Chichester + Brisbane - Toronto -+ Singapore



This text is printed on acid-free paper.
Copyright © 1992 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond

that permitted by Section 107 or 108 of the 1976 United

States Copyright Act without the permission of the copyright
owner is unlawful. Requests for permission or further
information should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012.

Library of Congress Cataloging in Publication Data:
Moon, F. C., 1939-
Chaotic and fractal dynamics : an introduction for applied
scientists and engincers / Francis C. Moon.
p. cm.
*“A Wiley-Interscience publication.”
Includes bibliographical references and index.
ISBN 0-471-54571-6
1. Chaotic behavior in systems. 2. Dynamics. 3. Fractals.
I. Title.
Q172.5.C45M66 1992
003'.7—dc20 92-25350

Printed in the United States of America

109876543



PREFACE

Had anyone predicted that new discoveries could be made in dynamics
300 years after publication of Newton’s Principia, they would have
been thought naive or foolish. Yet, in the decade 1977-1987, new
phenomena in nonlinear dynamics were discovered, principal among
these being chaotic and unpredictable behavior from apparently deter-
ministic systems. Since publication in 1987 of Chaotic Vibrations, the
first edition of this book, new discoveries in dynamics have been made
in many of the sciences, including biology. And, what should be of
special interest for the applied scientist or engineer is the emergence
of applications of the new ideas in chaotic dynamics and fractals.
Chaotic dynamics has been known to be a common occurrence in fluid
mechanics, and turbulence remains one of the unsolved problems of
classical physics. However, it is now generally accepted that unpre-
dictable dynamics can be found quite easily in simple electrical and
mechanical systems as well as in other physical systems.

The purpose of this book is to help translate the new mathematical
ideas in nonlinear dynamics into language that engineers and scientists
can use and apply to physical systems. Many fine books have been
written on chaos, fractals, and nonlinear dynamics (see e.g., Appendix
D), but most have focused on the mathematical principles. Many
readers of the first edition cited the inclusion of many physical exam-
ples as an important feature of the book, and they have urged me to
keep the physical nature of chaos as a hallmark of any new edition.
The decision to make a substantial rewrite of Chaotic Vibrations was
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based on feedback from a number of readers. They asked for more
tutorial material on maps or difference equations and fractals, and
they wanted some problems so that the book could be used as a basis
of a course.

In this book I have tried to start from a background that a B.S.
engineering or science graduate would have; namely, ordinary differ-
ential equations and some intermediate-level dynamics and vibrations
or system dynamics courses. | have also taken the view of an experi-
mentalist, namely that the book should provide some tools to measure,
predict, and quantify chaotic dynamics in physical systems.

Chapter 1 includes an introduction to classical nonlinear dynamics;
however, if the book is used as a text, additional supplemental material
is recommended. Chapter 2 presents an experimentalist’s view of
chaotic dynamics along with some simple tools such as the Poincaré
map. Chapter 3 introduces maps and is entirely new. It is an attempt
to summarize the basic concepts of coupled iterative difference equa-
tions as they relate to chaotic dynamics. Chapter 4 is a much expanded
litany of physical applications with lots of references to experimental
observations of chaos along with the appropriate mathematical mod-
els. Many readers have found the discussion of experimental methods
(Chapter 5) to be useful, and this too has been expanded. If Chapter
2 asks the question, ‘‘How do we recognize chaos?,”’ then in Chapter
6 we ask, ‘“‘How do we predict when chaos will occur?’’ Topics such
as period doubling, homoclinic bifurcations, Shilni’kov chaos, and
Lyaponov exponents are discussed here. The treatment of fractals has
been much expanded in the new Chapter 7, including an introduction
to multifractals. One of the new directions in chaos research has been
in spatiotemporal dynamics. An introduction to some of the simple
models of spatially extended systems including dynamics of chain
systems and Lagrangian chaos are discussed in Chapter 8. Finally, in
Appendix C, an expanded list of chaotic toys and experiments is
presented; a guide to some of the more popular books on chaos and
fractals is given in Appendix D.

Although over 100 new references have been included in this new
edition, it became clear that the tremendous growth in papers on chaos
and fractals in the last few years would make it impossible to cover
all the significant papers. I apologize to those researchers whose fine
contributions have not been cited, especially those who took the time
to send me papers, photos, and software. The inclusion of more of the
papers from my own Cornell research laboratory must be interpreted
as an author’s vanity and not any measure of their relative importance
to the field.
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I have written this new edition not only because of the success of
the first, but because I believe the new ideas of chaos and fractals are
important to the fields of applied and engineering dynamics. It is
already evident that these new geometric and topological concepts
have become part of the laboratory tools in dynamics analysis in
the same way that Fourier analysis became an important part of
engineering systems dynamics decades ago. Already, these tools have
found application in areas such as machine noise, impact printer dy-
namics, nonlinear circuit design, laser instabilities, mixing of chemi-
cals, and even in understanding the dynamics of the human heart. This
book is only an introduction to the subject, and it is hoped that
interested students would be inspired to explore the more advanced
aspects of chaos and fractals, not only for its potential application,
but for the fascination and beauty of the basic mathematical ideas
which underlie this subject.
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1

INTRODUCTION:
A NEW AGE OF DYNAMICS

In the beginning, how the heav’ns and earth rose out of chaos.
J. Milton
Paradise Lost, 1665

1.1 WHAT IS CHAOTIC DYNAMICS?

For some, the study of dynamics began and ended with Newton’s
Law of F = mA. We were told that if the forces between particles and
their initial positions and velocities were given, one could predict the
motion or history of a system forever into the future, given a big
enough computer. However, the arrival of large and fast computers
has not fulfilled the promise of infinite predictability in dynamics. We
now know that the motion of very simple dynamical systems cannot
always be predicted far into the future. Such motions have been
labeled chaotic, and their study has promoted a discussion of some
exciting new mathematical ideas in dynamics. Three centuries after
the publication of Newton’s Principia (1687), it is appropriate that
new phenomena have been discovered in dynamics and that new
mathematical concepts from topology and geometry have entered this
venerable science.



2 INTRODUCTION: A NEW AGE OF DYNAMICS

The nonscientific concept of chaos' is very old and is often associ-
ated with a physical state or human behavior without pattern and out
of control. The term chaos often stirs fear in humankind because it
implies that governing laws or traditions no longer have control over
events such as prison riots, civil wars, or a world war. Yet there is
always the hope that some underlying force or reason is behind the
chaos or can explain why seemingly random events appear unpre-
dictable.

In the physical sciences, the paragon of chaotic phenomena is turbu-
lence. Thus, a rising column of smoke or the eddies behind a boat
or aircraft wing? provide graphic examples of chaotic motion. For
example, the flow pattern behind a cylinder (Figure 1-1) and the mixing
of drops of color in paint (Color Plate 10) illustrate the basic nature of
chaotic dynamics. The fluid mechanician, however, believes that these
events are not random because the governing equations of physics for
each fluid element can be written down. Also, at low velocities, the
fluid patterns are quite regular and predictable from these equations.
Beyond a critical velocity, however, the flow becomes turbulent. A
great deal of the excitement in nonlinear dynamics today is centered
around the hope that this transition from ordered to disordered flow
may be explained or modeled with relatively simple mathematical
equations. What we hope to show in this book is that these new ideas
about turbulence extend to other problems in physics as well. It is the
recognition that chaotic dynamics are inherent in all of nonlinear
physical phenomena that has created a sense of revolution in physics
today.

We must distinguish here between so-called random and chaotic
motions. The former is reserved for problems in which we truly do
not know the input forces or we only know some statistical measures
of the parameters. The term chaotic is reserved for those deterministic
problems for which there are no random or unpredictable inputs or

! The origin of the word chaos is a Greek verb which means to gape open and which
was often used to refer to the primeval emptiness of the universe before things came
into being (Encyclopaedia Britannica, Vol. S, p. 276). To the stoics, chaos was
identified with water and the watery state which follows the periodic destruction of
the earth by fire. In Metamorphoses, Ovid used the term to denote the raw and
formless mass in which all is disordered and from which the ordered universe is
created. A modern dictionary definition of chaos (Funk and Wagnalls) provides two
meanings: (i) utter disorder and confusion and (ii) the unformed original state of the
universe.

2 The reader should look at the beautiful collection of photos of fluid turbulent
phenomena compiled by Van Dyke (1982).



