THE LOGIC OF
PROGRAMMING

ERIC C. R. HEHNER

THE LOGIC OF
PROGRAMMING

ERIC C. R. HEHNER

Englewood Cliffs. vew Jersey London New Dethi Rio de Janeiro
Singapore Sydney Tokyo Toronto Wellington

CONTENTS

Contents 0

Preface 6

o

Logic 10

0.0

0.1

0.2

Sentential Logic 11

0.0.0 Syntax 11

0.0.1 Semantics 12

0.0.2 Consistency and Completeness 16
0.0.3 Laws 18 :

0.0.4 Relaxed Syntax 21

0.0.5 Axioms, Inferences, and Theorems 23
0.0.6 Models 26

Predicate Logic 26

0.1.0 Syntax 27

0.1.1 Relaxed Syntax 29

0.1.2 Informal Semantics 30~

0.1.3 Formal Semantics 33

0.1.4 Russell’s Barber 35

0.1.5 What Color are Unicorns? 36
Exercises 37

Types and Bunches 40

1.0

Yt et
W N =

14

Natural Numbers 41

1.0.0 Syntax 41

1.0.1 Semantics 42

1.0.2 Induction 45

Other Numbers 47
Ranges 49

Bunches 351

1.3.0 Syntax 52

1.3.1 Semantics 54

1.3.2 Distributing Operators 55
1.3.3 Types as Bunches 56
Exercises 56

1 CONTENTS

2 Names and Definitions 60
2.0 Substitution 61 .
2.1 Bunch Definition 63
2.1.0 Recursion 64
2.1.1 Monotonicity 70
2.2 Predicate Definition 72
2.3 Exercises 75

3 Sequences and Grammars 80
30 Lists 80
3.0.0 List Operators 81
3.0.1 List Types 85
Strings 86
Grammars 87
3.2.0 Informal Syntax of Grammars 88
3.2.1 Formal Syntax of Grammars 90
3.2.2 Pro Grammar 92
3.3 Exercises 93

w W
DO e

interiude: professional responsibility 98

4 Pro Language 100
40 Expressions 100
4.0.0 Numbers 101
4.0.1 Characters 101
4.0.2 Booleans 103
4.0.3 Lists 104
4.0.4 Bunches 106
4.1 Definitions 108
4.1.0 Constants and Variables 109
4.1.1 Other Definitions 111
42 Phrases 113
4.2.0 Identity 114
4.2.1 Assignment 114
4.2.2 Phrase Composition 115
4.2.3 Phrase Definition 116
4.3 Conditionals 116
4.3.0 Conditional Expressions 117
4.3.1 Conditional Phrases 119
4.3.2 Conditional Definitions 120
4.4 Operation Counting 120
4.5 Exercises 121

CONTENTS

Semantics 124

5.0
5.1

5.2

5.3

5.4

Expressions 124

‘Phrases 128

5.1.0 Identity 130

5.1.1 Assignment 130

5.1.2 Composition 133

5.1.3 Conditional 134
Definitions 135

5.2.0 Expression Names 135
5.2.1 Phrase Names 136
Transformers 138

5.3.0 Phrase Properties 141
5.3.1 Usefulness and Computability
5.3.2 Favorability 149
Exercises 152

Interiude: the role of formalism 1886

Programming 158

6.0

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Rules 159

6.0.0 Local Rule 159
6.0.1 Loop Rule 161
6.0.2 Invariant 164
Remainder 165
Summation 168
Exponentiation 170
Linear Search 172
Information Gain 175
Binary Search 177
Insertion Sort 180
Robustness 184
Summary - 186

6.10 Exercises 186

147

3 CONTENTS

7 Parameters and Arguments 194

7.0 Functions 194
7.0.0 Argumentation 198
7.0.1 Positional Notation 199
7.0.2 Function Types 201
7.0.3 Recursive Function Definition 203
7.0.4 Functional Programming 204

7.1 Procedures 206

7.2 Classes 209

7.3 Exercises 211

Interiude: operational and mathematical reasoning 214

8 iteration 216
8.0 Indefinite Iteration 216
8.0.0 Greatest Common Divisor 218
8.0.1 Iteration versus Recursion 221
8.1 Definite Iteration 224
8.2 Rotation 226
8.2.0 General Rotation 227
8.2.1 An Improvement 229
8.2.2 Another Improvement 230
8.2.3 A Completely Different Solution 231
8.3 Exercises 233

9 Modules, Programs, Communication 238
9.0 Modules 239
9.0.0 Expression Modules 240
9.0.1 Phrase Modules 242
9.0.2 Definition Modules 243
9.1 Programs 245
9.2 Communication 248
9.2.0 Input 250
© 9.2.1 Output 251
9.2.2 Convenient Communication 252
9.3 Exercises 253

Interiude: programming style 258

CONTENTS

10 Data Structures 260

10.0 Stack 261 v
10.0.0 Procedural Stack 263
10.0.1 Bracket Problem 265
10.0.2 Limited Stack 267

10.1 Queue 268

10.2 Tree 270

10.3 Sequential File 273

10.4 Exercises 278

1 1 Sequential Execution 286
11.0 Operational Explanations 287
11.1 On Call 290
11.2 Expression Evaluation. 292
11.3 Execution Time 293
11.4 Exercises - 295

1 2 Concurrent Execution 296
12.0 Independence 296 '
12.1 Insertion Sort 299
12.2 Buffer 300
12.3 Execution Control 303

"12.4 Commutativity 305 .

12.5 The Dining Philosophers 307
12.6 Optimum Concurrency 309
12.7 Exercises 310

Appendlces

Collections and Sequences 312
Pro Syntax 316

Standard Context 322
Meaning Predicate 328
Implementation 332

-mooOowp»

Afterword 338
Sources and Bibliography 342
Index 346

PREFACE

_ A student who wished to learn computer programming asked me
for advice on which of two courses to take. One was more mathemati-
cal than the other, and he did not like Mathematics. Since he was a
pianist, 1 asked him which course one should take to become a com-
poser, if one does not like music.

This book introduces the subject of computer programming as a
rigorous, mathematical discipline. Its leve! of exposition makes it suit-
able for an advanced undergraduate university course, or introductory
graduate course. As much as possible, it is self-contained, relying on
mathematical ability but not on specific mathematical knowledge past
the secondary school level. People whose interest is more in the practi-
cal aspects of programming than in the theoretical aspects will want to
skip lightly over Chapters 2, 5, 11, and 12, and to concentrate on
Chapters 6 through 10. Of course, those with the reverse interest will
want to make the reverse concentration. Sprinkled throughout the
book are paragraphs clearly marked *‘ Aside’’. For beginners to the sub-
ject of programming, the text is complete without these paragraphs, and
they can safely be ignored. They are intended for people who already
have programming experience, to relate the material of this book to
what they already know.

With the buzzwords ‘‘structured programming’, standard texts
typically suggest that programs should be composed in such a way that
they can be seen to be correct, but these texts usually do not provide
the means of doing so. Instead, they introduce programming constructs
only by describing storage of values and flow of control, thus providing
only the means to trace particular executions. This book differs by
teaching the mathematics necessary for correctness concerns, in addi-
tion to providing operational models. It is not a survey of programming

PREFACE

methodology, but a thorough exposition of one method of program-
ming.

Any book whose title or preface suggests that it will make pro-
gramming easy is a fraud. Any book that avoids the ‘‘difficult’” topics
of formal semantics and analysis of efficiency avoids teaching program-
ming, and should itself be avoided. Such books actually make program-
ming more difficult by denying the would-be programmer the necessary
intellectual tools. Avoiding difficult topics may serve universities
whose goal is to maximize enrolment, but it is to the detriment of stu-
dents. It is unfair to students who cannot ultimately succeed to delay
the realization that programming is difficult for them, and it is unfair to
good students to delay their education and the enjoyment of mastering
the subject. We have plenty of poor programmers now, we need a few
good ones. : ‘

The programming language used in this book is Pro. The
language is introduced herein; no previous knowledge of it is assumed.
Its design criteria were that it have a simple, elegant, formal definition
(both syntax and semantics), and that it facilitate a mathematical style
of program composition. No standard language was designed on this
basis, and none meets these criteria. Programming languages are not
natural objects that drop from the sky, and should not be studied as
though they are. When they are inadequate or too complex, they
should be criticized and changed. The Pro language is simpler than
most popular languages, but it is not a toy. It is presented in complete
detail, and constitutes one theme of the beok: that programming prac-
tice and programming language have a great influence on each other.
Of course, students will want their knowledge to be useful when they
leave university and join industry. They will still use the concepts and
the notations learned here, even when their programs are to be coded
m a standard language. And they will be better able to see the
Strengths, and especially the weaknesses, of those languages, after their
exposure to Pro.

Having available a Pro implementation has some advantages, but
also some disadvantages. It is fun to use computing equipment, to see
one’s program be executed (or at {east to see the result of execution),
to test one’s creation. This fun should not be underestimated as a
motivator, indeed, it has played a part in attracting many of us to the
computing field. But the unfortunate trend in programming courses has
been to encourage the attitude *‘try it and see if it works™ as a method
of program composition. Advanced language processors, with sophisti-
cated error repair, which are intended for the laudable purposes of
teaching syntax and allowing compilation (o continue, have a bad side

PREFACE : ‘ 8

effect: students come to think that the computer will correct their mis-
takes. Problem assignments seem to demand a running program (with
no apparent errors) rather than a correct one (apparent that there are
no errors). Graders ease their burden by grading the output from an
execution of the program, rather than grading the program. In this
book, the running of programs, for those who have a Pro implementa-
tion, is relegated to an appendix. Computers can usefilly aid in the
development of a program by providing ‘‘word processing?y or ‘‘edit-
ing” facilities, by checking the syntax of the program, by checking
proofs, by storing and retrieving pieces of a program, and by reminding
the programmer which pieces still need to be written. These facilities,
though helpful, are not necessary; pencil and paper still work. As much
fun as pushing buttons may be, the real fun and the content of this
book is the intellectual part of programming.

At the top of my list of people to thank are my parents; they are
responsible for a large part of my training, and I hope they are not too
displeased with the result. My wife, Barbara, provided the right combi-
nation of patience and impatience to help me complete this work. For
- my programming education and many of the ideas in this book, I thank
the members of IFIP Working Group 2.3 on Programming Methodol-
ogy, particularly Edsger Dijkstra, David Gries, Tony Hoare, Jim Horn-
ing, Cliff Jones, Bill McKeeman, John Reynolds, 'and Wlad Turski.
Thanks also go to Christian Lengauer, Bob Tennent, Roland Back-
house, David Elliott, Nigel Horspool, Hugh Redelmeier, and Jean-
Raymond Abrial for reading and criticizing the first draft. I thank the
class to whom [first presented this material, for pointing out problems
and ways to improve it. Inge Weber worked hard with a difficult text,
word processor, and author, to produce a readable manuscript. Oscar
Nierstrasz produced the final camera-ready copy.

This book is dedicated to my son Joshua, who has shown me that
people (at least one of them) begin logical, and are urged and pressed
to conform to an illogical and inconsistent world; may he continue to
resist.

O Locic

When airplanes were new, pilots flew by the feeling in the seat of
their pants. Natural ability, bravery, daring, and luck were the neces-
sary qualifications. One could hardly expect the early pilots to be well-
trained, there being no previous generation of pilots whose experience
would provide the basis for training. But today, of course, we do not
entrust commercial aircraft and passengers’ lives to natural ability
alone, and though pilots may be brave and daring, we hope they are not
often required to use those qualities.

The programmers of today, like those early pilots, use intuition
and cunning; they defy all odds to make their programs fly. That iltogi-
cal, corny line ‘‘It’s so crazy it just might work!”’ describes their modius
operandi. But the odds usually win: by far, most of the programs writ-
ten today do not work! They work enough of the time that govern-
ments, financial institutions, and industries rely on them, but fail
enough of the time to provide thousands of amusing stories of ‘‘com-
puter errors’’ (at least, the stories are amusing when they happen to
other people).

It is now time to replace the ‘‘seat of the pants’ programmer by
someone who is well-trained in reliable methods of program composi-
tion. The methods presented in this book are sufficient for writing any
program, they are helpful, and they lead to correct programs. Intelli-
gence is required to use them properly, and there is no guarantee
against making a mistake. But they provide guidance, and for those
who are careful, the way to avoid mistakes.

Does that take the excitement out of programming? To some
people, debugging a buggy program is as exciting as solving a good
murder mystery or puzzle. The computer industry is reserving a special

11 0 LOGIC

place and name for these people: they are the home computer
enthusiasts, or ‘‘hobbyists”. But surely the prospect of creating pro-
grams that work and that perform useful and previously unaccom-
“plished tasks is more exciting than the fumblmgs of an untrained hob-
byist.

The study of Informatics (Computer Science) requires a familiar-
ity with Logic. This background is needed for digital system design,
computability, data base modeling, automatic theorem proving, and
other branches of Informatics. It is especially needed for the most basic
part: programming. So let us begin.

0.0 Sentential Logic

What is Mathematics? The easy answer, and a useful one, is that
Mathematics is what mathematicians do. They think a lot (at least the
good ones do), and they write things down; they scratch their heads;
sometimes they smile at what they’ve written, or even jump for joy,
sometimes they frown and then usually they erase whatever it was that
made them frown. Anyone who wants to become a mathematician
must learn what to write, when to smile, and when to frown. The rules

“saying what to write are called the syntax of Mathematics; the rules say-

ing when to smile or frown are called the semantics. Syntax is also
known as ‘‘form’’, and the things written according to the syntactic
rules are called formulas or synonymously, expressions. Semantics is
also known as “meaning”

The ﬁrst piece of Mathemaucs we need is Sentential Logic; its
older name is Propositional Caiculus; it is sometimes also called
Boolean Algebra, after its inventor George Boole (in 1854), although
that-term can be applied to a more general class of algebraic structures.

0.0.0 Syntax
Here is the syntax of Sentential Logic.
0. true and false are formulas.
1. If a is a formula, then (-a) is a formula.
2. If a and b are formulas, then the following are all formulas.

(anb)
(a vb)
(a =0b)
(a = b)

0.0 Sentential Logic 12

For the moment, there are no other ways of forming formulas. In rule
1, the formula is called negation, and the symbol -’ is pronounced
“not”’. In rule 2, the formulas are called (respectively) conjunction,
disjunction, implication, and equation, and the symbols are pronounced
“and”, “‘or”, “‘implies”, and ‘‘equals’. In a conjunction (a A b), the
two subformulas a and b are called conjuncts; in a disjunction (a v b),
a and b are called disjuncts; in an implication (@ = b), a is called the
antecedent, and b the consequent; in an equation (a = b), there are
no special names for a and b except ‘“‘left side’ and ‘‘right side’’,
which apply to the other formulas also.

Aside. In other texts, (-a) may be written (~a) or (a’) or
a, (a A b) may be written (a & b) or (a ®b), (a v b) may
be written (@ | b) or (a + b); (a = b) may be written
(a D b) or (a— b); (a = b) may be written (¢ = b) or
(a — b). Formulas are sometimes called ‘‘well-formed formu-
las™, suggesting that there are other kinds of formulas (il
formed?). End of Aside. '

Here is a formula. .
((true A (-(false v (true =>false)))) => (false = true))

To see that it is, we must see how to build it according to the rules; the
activity of determining whether something is a formula, i.e. whether it
follows the syntactic rules, is called ‘‘parsing’’. :

When we move on to other parts of Mathematics and program-
ming, we may need to distinguish the formulas we introduce there from
the ones we have introduced here. The phrase *‘formula of Sentential
Logic™ is a little too long to use repeatedly; we can say more briefly
“sentential formula’’, or ‘‘sentential expression’’, or ‘‘propositional for-
mula’’, or ‘‘propositional expression’’. Even more briefly, we shall say
“‘sentence’’, or ‘‘proposition’’, and still we mean a formula of Senten-
tial Logic.

0.0.1 Semantics

Our present goal is to become mathematicians, not philosophers;
accordingly, we shall not consider the question **What is truth?”’. (As
this book goes to press, the latest report is that the philosophers have
not yet settled that question.) We shall use the words ‘‘true’” and
““false’” simply to identify two classes of sentences: the ones we call
true are those that make mathematicians smile; the false ones are those

13 0 LOGIC

that evoke a frown. To give the semantics of Sentential Logic, we must
place the sentences into these two classes. Let ¢ and ¢' be any true sen-
tences, / and /' be any false sentences, and a be any sentence.

true sentences | false sentences
true false
(=) (-1)
(rath (f A a)
(rva) (anf)
(avi) v
(a=1) (t=1)
(f =a) (t=r)
r=1) =1
f=rf)

Now we know what sentences mean. For a complicated sentence, it
may not be obvious which class it belongs to, but we can find out by
replacing parts of it by simpler sentences that mean the same thing.
Our earlier example

((true A (=(false v (true =>false)))) = (false = true)) |
means the same as ;

((true A (~(false v false))) => false)

because (true = false) means the same as false and (false = true)
means the same as false. Continuing this process, we obtain

((true A (-false)) => false)
((true A true) = false)
(true = false)

false .

and so it is seen to be a false sentence.

The activity of determining what a sentence means is called
‘‘evaluating’’ the sentence. It uses a principle that is common to all
mathematical formulas, but not to all natural languages: the ‘‘Denota-
tional Principle’’, or ‘‘Transparency Principle’’.

Transparency Principle. If one formula is part of a larger for-
mula, and the part is replaced by another formula with the
same meaning, then the meaning of the larger formula is not
changed.

0.0 Sentential Logic 14

Sentential Logic can be used to reason about the world, if it is
supplied with the facts. We simply add sentences about the world to
our logic, putting each into the true or false class as appropriate. Here
are some examples. '

new syntax new semantics
(the Pope is Catholic) true
(water is wet) true
(the moon is made of green cheese) false
('m a monkey's uncle) ' false

Determining whether these sentences are true or false is no concern of

" Logic; but if we are given that information, we can use Logic to analyze
compound sentences. English connectives and modifiers such as
“not”, ““and’’, “‘or®”, “if”’, and ‘*but’’ can all be translated into logical
symbols. For example, the English sentence “The Pope is not
Catholic.”” strongly suggests the logical sentence

(~{the Pope is Catholic))

which is a false sentence. The English sentence "*Water is wet and the
moon is made of green cheese.’’ should become the logical sentence

((water is wet) A (the moon is made of green cheese))
which can be seen to be false by evaluating it:

(true A false)
false

The English sentence ‘‘Either the Pope is Catholic, or the moon is
made of green cheese.’” suggests the logical sentence

((the Pope is Catholic)
v (the moon is made of green cheese))

which is evaluated as follows:

(true v false)
true

and is seen to be true. From the English sentence “'If the moon is
made of green cheese, then I'm a monkey’s uncle.” we obtain the logi-
cal sentence

({the moon is made of green cheese)
= (I'm a monkey’s uncle))

and evaluate it

