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Preface

THIS BOOK is an introduction to the theory of quantum mechanics
for advanced undergraduate students. I assume that the student
has had some contact with quantum physics and with elementary
wave mechanics. Since the first three chapters review the experi-
mental foundations of quantum physics and deal with simple ap-
plications of the Schrodinger wave equation, previous contact is
not absolutely necessary, but it is certainly helpful.

In their first contact with the quantum-mechanical wavefunc-
tion and the Schrodinger wave equation, students often become
infected with the misconception that these are the essence of
quantum mechanics—if you understand the wavefunction and the
Schrédinger wave equation and its solution by separation of vari-
ables, you understand everything. To suppress this misconcep-
tion, I have deliberately placed the wavefunction and the Schro-
dinger wave equation in a subordinate role, as merely one special
representation of the kinematics and the dynamics of a quantum-—
mechanical system. In this, I adhere to the tradition laid down by
Dirac in his great book, The Princlples of Quantum Mechanics,
which is now more than fifty years old, but nevertheless retains its
freshness, and still repays close study. Following Dirac, I empha-
size the abstract formulation of quantum mechanics in terms of
state vectors and operators, and I employ operator techniques for
the solution of eigenvalue problems. In most undergraduate text-
books, operator techniques are reserved for the harmonic oscillator
and for the treatment of angular momentum, which can be conven-
iently handled by raising and lowering operators. But, as was
shown by Schrodinger in the 1940s, suitable raising and lowering
operators can be constructed for all the familiar eigenvalue prob-
lems usually solved by separation of variables with the wave equa-
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tion. I have adopted Schrodinger’s factorization method, expand-
ing his discussions to make them accessible to undergraduates.
To some extent, my presentation of the factorization method imi-
tates that by H. S. Green.*

My book developed out of successive editions of lecture notes
I produced for my classes at Rensselaer Polytechnic Institute over
several years. I am indebted to the students for their enthusiasm
and patience. And I owe a long-standing debt to Professor Frank
S. Crawford, whose lectures many years ago, when I was an under-
graduate at Berkeley, first gave me an appreciation for the power of
operator methods.

H.C. O.

*H. S. Green, Matrix Methods in Quantum Mechanics (Barnes & Noble, New

York, 1965).
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1

The Origins
of Quantum Mechanics

Quantum mechanics lies at the root of all of the physics of today.
It attained this fundamental place early this century, when it sup-
planted classical mechanics. Quantum mechanics has proved ex-
tremely successful in describing the behavior of the world of
matter, and it is likely to retain its fundamental place in physics for
a long time to come. However, quantum mechanics has some seri-
ous deficiencies in that it leads to unacceptable infinite results in
some calculations of interactions of particles. Although physicists
have devised divers tricks for bypassing or hiding these infinities,
it is possible that some radical revision of quantum mechanics will
ultimately become inevitable. One speculative suggestion for
such a revision is the superstring theory now being investigated by
physicists.

In this book we will deal only with nonrelativistic quantum
mechanics, and we will concentrate on systems consisting of a
single particle interacting with a potential. The relativistic quan-
tum theory of systems of several interacting particles is quite com-
plicated, because the interactions can create and destroy parti-
cles. Hence the number of particles in the system is not fixed, and
it becomes necessary to consider concurrently a large ensemble of
systems with different numbers of particles. The treatment of sys-
tems with a variable number of particles requires special mathe-
matical techniques (“second” quantization).

This first chapter is a historical sketch of the origins of quan-
tum mechanics. Full explanations of the concepts and formulas
mentioned here are reserved for later chapters.
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1.1 Early Quantum Theory

Quantum theory began in 1900 with Planck’s postulate of the
quantization of energy in blackbody radiation, or cavity radiation
(the genealogical chart inside the front cover gives a summary of
the historical development of quantum physics). Planck’s theory
of the blackbody spectrum was the culmination of many years of
intensive efforts by experimental and theoretical physicists. It
had been known for some time that the spectrum of thermal radia-
tion contained in a cavity in thermal equilibrium must be a univer-
sal functior® of the temperature, completely independent of the
material of the walls of the cavity. By 1900, detailed measure-
ments by Rubens, Kurlbaum, Lummer, and Pringsheim had deter-
mined the shape of the spectrum, and Planck was able to make a
clever guess at an empirical formula representing this spectrum.
However, he was unable to provide a theoretical derivation of this
formula within the context of classical physics. For low frequen-
. cies, the spectrum actually did agree with the prediction of classi-
cal physics; but for high frequencies, classical physics predicted a
monotonic increase of the spectral energy density, whereas the
measured energy density decreased toward zero (see Fig. 1.1).

x 10-8ym3+ Hz
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-t ——d

1 ¥ L .
0 1.0 2.0 30 x 101 Hz

Fig. 1.1 Spectral distribution of the energy density as a function of fre-
quency for the thermal radiation in a cavity at 2000 K. The spectral distribu-
tion plotted here is the energy per unit volume and per unit frequency
interval. The classical prediction, shown in gray, is based on the equiparti-
tion theorem, according to which each mode of electromagnetic oscillation

in the cavity should have an average energy §AT.
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Planck finally found that he could derive his empirical for-
mula from a postulate of quantization of energy. He adopted a
simple model for the walls of the cavity: the walls consist of a large
number of electrically charged harmonic oscillators of all possible
frequencies (since the final result is independent of the material of
the walls, he was free to adopt any convenient model). The oscil-
lators exchange energy with the radiation in the cavity, and hence,
at thermal equilibrium, the energy distribution of the radiation
matches the energy distribution of the oscillators. Planck postu-
lated that the energy of an oscillator of frequency v could only
assume one or another of the values

E = nhy n=0123,.... (1

where h is a unggsal constant of proportionality, later called
Planck’s constant. From this quantization condition, Planck de-
rived the thermal energy distribution of the oscillators and of the
radiation. Qualitatively, we can understand how the quantization
condition leads to a decrease of the spectral energy at high fre-
quencies (hv >> kT); the energy quantum hv is then so large that
the typical thermal energy kT is insufficient to provide the mini-
mum energy hv required to excite the oscillator from the ground
state E°= 0 to the first excited state E = hy; thus, the oscillator is
likely to remain quiescent, and it then does not emit radiation of
this frequency into the cavity. '

Although Planck quantized the oscillators in the walls of the
cavity, he treated the electromagnetic radiation in the cavity as
completely smooth and continuous, according to classical electro-
magnetic theory, that is, according to Maxwell’s equations. A few
years later, Einstein took quantization a step further by proposing
that the electromagnetic radiation exists in the form of packets of
energy hv, which came to-be called photons. This meant he could
view the radiation as a gas of photons. With this picture of the
radiation, Einstein could apply statistical mechanics to investigate
the behavior of the photon gas at thermal equilibrium, and he was
able to supply an alternative derivation of Planck’s formula.

Einstein further exploited the concept of photons to explain
the puzzling features of the photoelectric effect. Measurements
by Hertz, Lenard, and others had shown that when light strikes the
surface of a metal, it ejects electrons, or photoelectrons, with an
energy that depends on the frequency of the light, but not on its
intensity. This contradicts classical electromagnetic theory, ac-
cording to which the energy available in the light is proportional to
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the intensity, and does not depend at all on the frequency. But if
light consists of a stream of photons of energy hy, then the maxi-
mum energy that an electron in the metal can absorb in a collision
with a photon is hr. Of this maximum energy, the electron must
give up some fixed amount e¢ to escape from the metal, where ¢ is
a characteristic amount of energy per unit charge, called the work
function of the metal. The final maximum kinetic energy of an
ejected photoelectron is then

Kmax = hy - ed’ (2)

This equation for the energy of the photoelectrons was later veri-
fied in detail by Millikan in a series of meticulous experiments.
The photoelectric effect corifidhed that the energy in light is
packaged in discrete amounts Av. The Compton effect, discovered
by Compton in 1922, established that the momentum in light is
also packaged in discrete amounts. In an experimental investiga-
tion of the scattering of a beam of X rays by a carbon target, Comp-
ton noticed that the X rays deflected by large angles always
emerged with increased wavelengths. He was able to explain this
wavelength shift by assuming that the X-ray photons have not only
an energy hv, but also a momentum hv/c. When such a photon
collides with an electron, it suffers a loss of energy (and an in-
crease of wavelength) that depends on the angle of deflection.
Einstein also applied quantization to the calculation of the
specific heat of solids. Each atom or molecule in a crystalline solid
can be regarded as held in its place by springs, and hence each
atom or molecule is a three-dimensional harmonic oscillator. Ac-
cording to -the equipartition theorem of classical statistical me-
chanics, at thermal equilibrium each such oscillator should have
an average energy of 3kT. But this prediction is contradicted by
the measured values of the specific heat, which are found to be
much less than 3kT at low temperatures. Einstein explained the
dependence of the specific heat on temperature by appealing to
the quantization condition (1). Qualitatively, if the temperature is
low (kT << hv), the typical thermal disturbances are insufficient to
excite oscillations, and the atoms fail to acquire thermal energy.
In 1913, Bohr extended the quantizatienf of energy to the hy-
drogen atom, with spectacular success. From the experiments on
the scattering of alpha particles by atoms, Rutherford had deduced
that the atom must consist of a very small, very massive nucleus

.around which orbit the electrons. But this nuclear model of the

atom was in conflict with classical electrodynamics, since an orbit-
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ing, accelerated electron should radiate and quickly lose all its
orbital energy. Bohr had no explanation for why orbiting electrons
do not radiate; but he blithely postulated that they did not. He
postulated that the electrons are locked in certain preferred sta-
tionary states, with circular orbits, and that they emit radiation
only when they make transitions from one stationary state to an-
other. The possible stationary states are characterized by quan-
tized values of the orbital angular momentum:

nh
L=%anﬁ (3)

This quantization of angular momentum leads to the quantization
of the orbital energy of the hydrogen atom:

1 met

En=- (41reg)2 24202

(4)

In a transition from one stationary state to another, the atom emits
a single photon of an energy equal to the difference between the
orbital energies. For instance, in the transition from the first ex-
cited state (of energy Eg) to the ground state (of energy E 1), the
energy of the emitted photon is hv = Eg -~ E;, and the frequency
of the emitted spectral line is

y = F‘_%_h_b‘_‘ (5)

This result for the frequency is in accord with the combination
principle, discovered empirically by Rydberg and Ritz, which
states that the frequencies of the spectral lines of the atoms can be
expressed as differences between terms, taken two at a time.

An experiment performed by Franck and Hertz provided direct
evidence for energy quantization in atoms. In this experiment, the
atoms in mercury vapor were subjected to collisions with low-
energy electrons. Franck and Hertz found that if the electron en-
ergy was below 4.9 eV, all the collisions were elastic; the incident
electrons did not have enough energy to excite the atoms from the
ground state to the first excited state, and they therefore merely
bounced off the atoms without any loss of energy. But if the elec-
tron energy was above 4.9 eV, some of the incident electrons
would give up 4.9 eV to excite the atoms, and the excited atoms
would subsequently reradiate this energy in the form of ultraviolet

light.
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In his simple theory of the hydrogen atom, Bohr had consid-
ered only circular orbits. Sommerfeld and, independently, Wilson
generalized Bohr's quantization rule for angular momentum to el-
liptical orbits and to-any kind of periodic motion. The general
Sommerfeld-Wilson quantization rule states that

fp dq = nh (6)

where g and p are the canonical coordinate and momentum for the
motion, respectively.

1.2 Wave Mechanics

=)

The early, or “old,” quantum theory relied heavily on classical
mechanics, but sought to supplement Newton's law with extra
quantization conditions for the selection of the preferred station-
ary states. Roughly, we can say that the old quantum theory ac-
cepted Newtonian kinematics, but sought to modify Newtonian
dynamics with supplementary conditions. In the 1920s, physicists
finally recognized that this attempt to graft a quantum structure on
the Newtonian roots was unworkable, and they recognized that
both Newtonian kinematics and dynamics had to be discarded.
The first step toward the new quantum mechanics was de
Broglie’s conjecture that electrons and other “particles” have
wave properties. De Broglie was led to this conjecture by a formal
analogy between geometrical optics and mechanics. He noticed
that the equations determining the rays of geometrical optics are

. analogous to the equations determining the trajectaries of particles

in classical mechanics. Since geometrical optics is the limiting
case of wave optics, he conjectured that classieal mechanics is the
limiting case of some wave motion. De Broglie postulated that the
frequency of the wave associated with a particle is related to the
energy of the particle by the same equation as for the light wave
associated with a photon: :

_E
v=1 : )]

He theh exploited the relativistic connection bétween energy and
momentum and frequency and wavelength to deduce that the
wavelength of the wave must be related to the momentum of the

particle:
A== (8)
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This is the de Broglie relation. Thus, for the wave associated with
a particle moving in the x direction, de Broglie proposed the har-
monic wavefunctlon

: x . 2m
¥ = sin 27 (vt - X> = sin 3= (Et — px) (9)
He suggested that the wave properties of particles could be con-
firmed experimentally by the observation of diffraction effects

when electrons are incident on crystals. In fact, some data on scat-
tering of electrons by crystals were already avallable and Elsasser

and Franck recognized diffraction peaks in these data. However,
their interpretation was not widely accepted until Davisson and
Germer did further detailed experiments with crystals. At about
the same time, Thomson succeeded in demonstrating electron dif-
fraction in scattering experiments with thin films of metals. Fig-
ure 1.2 shows such a diffraction pattern produced by electrons that
have passed through a thin film of aluminum consisting of very
many crystallites oriented at random. Additional evidence for the

Electrons X rays

Fig. 1.2 This composite photograph strikingly demonstrates the similarity
of the diffraction patterns produced by X rays and by electrons upon passage
through a thin film of aluminum. The X rays were registered on-a photo-
graphic plate placed beyond the film of aluminum; the electrons were regis-
tered by a fluorescent screen, similar to a television screen. ( Project Physics,
1975; Holt, Rinehart, Winston, and Education Development Center, Inc.,

Newton, MA)

! The phase velocity of this wave is Av = E/p; it does not coincide with the
velocity of the particle. The group velocity is dE/dp; this coincides with the
velocity of the particle (phase and group velocities will be discussed in Chapter 2).
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wave properties of electrons was provided by the experiments of
Rupp, who found that electrons obliquely incident on an optical
grating give rise to the familiar multiple-slit interference pattern.

The diffraction and interference patterns observed in these
experiments not only established that electrons have wave proper-
ties, but also that the waves obey the superposition principle:
when waves from two or more sources—such as two or more
slits—arrive at some point simultaneously, the net wave ampli-
tude is the sum of the individual wave amplitudes.

Meanwhile, Schrédinger formulated the wave equation
obeyed by the de Broglie waves, and he demonstrated that the
quantization conditions emerge from the solution of the eigen-
value problem for this wave equation. Schrodinger obtained his

wave equation by taking as starting point the standard classical
wave equation

2 2
Ve ) = =5 2 Ux, 1) = O (10

Here, u is the phase velocity, u = Av = hv/p. For a particle of
energy E moving in a potential V(x), the momentum is p =
V2m{E - V(x)], and the phase velacity is u = hv/V2m[E - V(x)],
S0 :

- 2
%Qv(x,t)—gﬂwm——mu;lia%glb(x, t)=0 (11)

Since the frequency of the wave is », the second time derivative of

¥(x, t) is —(2mv)? Y(x, t), and Eq. (11) reduces to

%nhfx, t) _“__Zm_[E_h%_X‘(L)]w(x’ t)=20 (12)

This is called the (time-independent) Schrodinger wave equation.

Note that Egs. (9) and (10) are actually wrong—we will see in
the next chapter that the wavefunction ¢ is a complex function, not
areal function; and the time-dependent Schrodinger equation in-
volves the first derivative with respect to time, not the second
derivative. Nevertheless, Schrodinger's approximate argument
led him to the correct equation (12). He applied this equation or,
rather, its three-dimensional version to the hydrogen atom, and he
found that both the quantization of angular momentum and the
quantization of energy emerge from the equation. In essence, the
Schrodinger equation yields a discrete set of possible energies



