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Preface

gs

The purpose of this text is to present an mtegratcd treatment of 4 numbet of
those topics in mathematics which can be made to depend only upon a sound
course in elementary calculus, and which are of common importance in many
fields of application. 3y o i

An attempt is mad fio deal with the variousi topncs in such a way that a
student who may not proceed into the more proi‘ound areas of mathematics
‘still may obtain an intelligent working knowledge of a substantial number of i+
useful mathematical methods, together with an apprapriate awareness of the - .2
foundations, mtcrrclatlons, and limitations of these methods. At the same time,
itis hoped thata student who is to progress, say, intoa r ngox’dius course in mathe- ’/ﬁﬁ»
matical analysns will be provided, in addition, with increased incentivé “and
motivation. For both of these purposes, the phrase “It can be- shown” is used
occasionally, not only to exhibit a generalization of an established conclusion
or a useful related fact, but also to introduce a needed basic result for which a
rigorous demonstration would require what is believed to be an inappropriately
excessive amount of detailed analysis or of my&_te preparation.

This revision incorporates a large number of relatively minor changes for
the purpose of increased clarity or precision or to supply a previously omitted
proof, a suhgg&tgl amount of added textual material (pa‘rtlcularly in the later
chapters), and about 250 additiona! problems.

The first four chapters are concerned chiefly with ordinary differential
equations, including analytical, operational, and numerical methods of solution,
and with special functions generated as solutions of such equations, In par-
ticular, the material of the first chapter can be considered as either a systematic
review or an igitjalintroduction to the elementary concepts and tcwis, as-

xi



xii Preface

sociated with linear equations and with special sqlvable types of nonlinear equa
tions, which are nzeded in subsequent chapters. The fifth chapter deals with
boundary-value problems governed by ordinary differential equations, with the
associated characteristic functions, and with series and integral representations
of arbitrary fu Tunctions in terms, of these functions.

Chapter 6 develops the useful ideas and tools of vector analysis; Chapter 7
provides brief introductions to some special topics in higher-dimensional calculus
which are rather frequently needed in applications. The treatment here occa-
sionally consists essentially of indicating the plausibility and practical signifi-
cance of a result and stating conditions under which its validit~ 1sg1gorously :
established in listed references. -

In Chapter 8, certain basic concepts associated with the simpler types of
partial differential equations are introduced, after which, in Chapter 9, full use:
is made of most of the tools developed in earlier chapters for the purpose of

ormulating and solving a variety of typical problems goverred by the partial
differential equations.of mathematical physics. A new section deals with the ap-
plicationt of the so-called method of variation of parameters to such problems,

Chapter 10 treats the basic topics in s in the theory of “analytic functions of @
complex variable, including contour integration and residue calculus. Although
certain developmentsQn preceding chapters l:ould be made more ¢legant and
more complete if they were made to depend upon this treatment, introduced at
an earlier stage, it is felt that, in some cases, the knowledge Eased on a brief
initial study of analytic functions may not be sufficiently firm to support signifi-
cantly dependent treatments of the other topics, but that such knowledge then
.may better serve-to ¢ _ggy the other topics when subsequently provided. How-
ever, since most of the treatments of Chapter 10, as well as most of those of
Chapters 6 and 7, are independent of the content of preceding chapters, material
from these chapters can indeed be introduced at an earlier stage in a given course,
at the dnscretlog of the instructor. It has been considered reasonable to assume
knowledge of cértain elementary properties of complex numbers in the earlier
chapters, even though the solution of the equation x* 4+ 1 =0 then may occa-
sion a personal review on the part of the reader.

A new Chapter 11 considers some applications of analytic function theory
to other fields, including the derivation of methods for the inversion of Laplace
transforms (an expansion of material previously presented in annotated prob-
lems), an indication of the properties and uses of conformal mapping (formerly
included in Chapter 10), and a new brief treatment of Green’s functions as
related to partial differential equations.

Extensive sets of problems are included at the end of each chapter, grouped
in correspondence . with the respective sections with which they are associated.
In addition to more-or-less routine exercises, there are numerous annotated
problems which are xn&ndww!elo ing results or tech-
niques whichéxtend or complement treatmients in the text] or)in dealing with a
particularly challenging application. Such problems may sefve as focal points




Preface : xiii

for extended discussions or for the introduction of additional (or alternative)
material into a chapter, permitting the text to serve somewhat more flexibly in
courses of varied types, New problems of this sort now permit the consideration
of topics such as one-dimensional Green’s functions and applications of elliptic
integrals, Fourier transforms, and associated Legendre functions. Answers to
all problems are either incorporated into the statement of the problem or listed
at the end of the book.

The author is particularly indebted to Professor E. Reissner for valuable
collaboration in the preliminary stages of the preparation of the original edition
and for many ideas which contributed to whatever useful velty some of the
treatments may possess, and to Professor G. B. Thomas for additional advice
and help, as well as to a rather long list of other collcagues and students who
have offered criticisms and suggestions leading to many of the modifications in-
corporated into this revision.

F. B. HILDEBRAND
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1

Ordinary Differential Equations

1.1.. Introduction. A differential equation is an equation relating two or
more variables in terms of derivatives or dlﬁ'crcntlals Thus the simplest differ-
ential equatlon is of the form

= h(x), 1)

where h(x) is a given function of the mdependent variable x. The solutnon is
obtained immediately by integration, in the form

y=[Knax+c, @

_ where C is an arbitraryjconstant. Whether or not it happens that the integral
can be expressed in terms of named or tabulated functions is incidental,!in the
sense that we accept as a solution of a differential equation any functional rela-
tion, not involving derivatives or integrals of unknown functions, the satisfaction
of which implies the satisfaction of the dlﬁ'erentlal equatlon Slmllarly, in an

equation of the form

Rx)G(y) dx + f(x)g(y)dy = O, 3

we may separate the variables and obtain a solution by integration in the form
F(x) ; f g0 4, | 4
[ 7+ [ - o @

if suitable account js taken of situations in which a divisor may vanish. V4
‘Usually we desire to obtain the most general solution of the differential
equation; that is, we require all functional relations which imply the equation.

1



2 Ordinary Differential Equations

In the general case it may be difficult to determine when al/ such relations have
indeed been obtained. Fortunately, however, this difficulty does not exist in
the case of so-called linear differential equations, which are of most frequent
occurrence in applications and which are to be of principal interest in what
follows. -

A differential equation of the form

)L+ aWG + o+ o WR +aly =fm O

is said to be a linear differential equation of order n. The distinguishing charac-
teristic of such an equation is the absence of gr_gd\‘?s or nonlinear functions
of the dependent variable (unknown function) y ts derivatives, the highest
Jderivative present being of order n. The coefficients a,(x), .. ., a,,(x) may_ be
arbitrarily specified functions of the independent variable x.

For a linear equation of the first order,

ae(x)d + a(x)y = f(x)

it is shown in Section 1.4 that if both sides of the equation are multiplied by a
certain determinable function of x (an “integrating factor”), the equation
always can be put in an equivalent form

2 [p(x)] = R,

where p(x) and F(x) are simply expressibleyin terms of a,, a,, and f, and hence
then can be solved directly by integration.

Although no such simple general method exists for solving linear equations
of higher order, there are two types of such equations which are of particular
importance in applications and which can be completely solved by direct
methods. These two cases are considered in Sections 1.5 and 1.6. In addition,
this' chapter presents certain techniques that are available for treatment of
more general linear equations.

Many of the basically useful propemes of linear differential equatlons do
mot hold hold for nonlinear equations, such as. .

Zi-*ﬂ’ Drsny=0 o@D +r=e
A few special types of solvable nonlinear equations are dealt with briefly in
Section 1.12.

The equations 'to be considered in thls chapter are known as ordinary
differential equations, as distinguished from partial differential equations,
which involve partial derivatives. with respect to two or more independent
variables. Equations of the latter type are treated in subsequent chapters.

Before proceeding to the study of linear ordinary differential equations, we
next briefly introduce the notion of limear dependence, which is basic in this
work.

o



1.2. Linear Pependence 3

1.2. Linear Dependence. By a linear combination of n fuuctions u,(x)
uy(x), . . . , u,(x) is meant an expression of the form

cns) + () + - + el = § e, ©)

where the ¢’s are constants. When at least one c is not zero, the linear com-
bination is termed nontrivial. The functions u,, u,, . .., u, are then said to be
linearly independent over a given interval (say a = x =< b) if over that interval
no one of the functions can be expressed as a linear combination of the others,
. or, equivalently, if no nontrivial linear combination of the functions is identically
zero over the interval considered. Otherwise, the functions are said to be
linearly dependent over that interval.
As an example, the functions cos 2x, cos? x, and 1 are linearly dependent
over any interval because of the identity

cos2x —2cos’x + 1 =0.

~ It follows from the definition that two functions are linearly dependent
over an interval if and only if one function is a constant multiple of the other
over that interval. The necessity of the specification of the interval in the
general case is illustrated by a consideration of the two functions x and |x|.
In the interval x > O there follows x — | x| = 0, whereas in the interval x <0
we have x + | x| = 0. Thus the two functions are linearly dependent over any
interval not including the point x = 0; but they are linearly independent over
any interval including x = 0, since no single linear combination of the two
functions is identically zero over such an interval.

Although in practice the linear dependence or independence of a set of
functions generally can be established by inspection, the following result is of
some importance in theoretical discussions. We assume that each of a set of n
functions u,, u,, . .., u, possesses n finite derivatives at all points of an interval
T Then, if a set of constan{s exists such that

cuy + ey + o +cu, =0 ,
for all values of x in 7, these same constants also satisfy the identit\i?
du,

du, _
+Czd + 'dx_o’
d*u d*u d?u,
C*Tz‘xT'“dezf e =0
u;l n—1 n—1
o f it oS0

Thus the n constants must satisfy n homogeneous linear equations. However,
such a set of equations can possess nontrivial solutions only if its coefficient
determinant Vanishes. Thus it follows that if the functions u,, u,, ..., u, are
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linearly dependent over an interval I, then the determinant

ul uz ) T e un
du, du, . - du, ‘
dx dx dx :
W(un Uy ..o un) I Teu s (7)
d"lu, d'-l“_l ... 47y,
dx* 1. dx*! dx*-1

vanishes zdentically over. I. This determinant appears frequently in theoret1ca1
work and is called the Wronskian (or Wronskian determinant) of the functions.
Thus we see that jf the Wronskian of u,,u,, . .. ,u, is not idzntically zero over I,
then the functions are linearly independent over I.

‘To illustrate, since the value of the determinant

I x x* x* ... x*
0 1! 2x 3x2 ... px -t
' - {0 0 2! 6x .-+ mn—Dx"?
WA, xx% ..., x)=| ' - :
Lxx. =100 "0 3 .. nn — 1)(n — 2x-3
0 0 0 0 ... n!

is merely the product of the nonvanishing constants appearing in the principal
diagonal and hence cannot vanish, it follows that the functions appéaring in
the first row are linearly independent (over any interval).

Unfortunately, the converse of the preceding theorem is not true since, in
unusual cases, the Wronskian of a set of linearly independent functions alsd may
vanish. That is, the vanishing of the Wronskian is necessary but not sufficient
for linear dependence of a set of functions. (For an example establishing the
insufficiency, see Problem 5.)

1.3. Complete Solutions of Linear Equations. The most general linear differ-
ential equation of the nth order can be written in the form

Dt a@EH+ o+ o @t aly =D ®

Here it is assumed that both sides of the equation have been divided by the
coefficient of the highest derivative. We will speak of this form as the standard
Jorm of the equation. This equation is frequently written in the abbreviated form

Ly = k(x), ®

where L here represents the linear differential operator

'L__ﬂ_l.a(x)i:l_;...._;_ ( d 0
= dr 1 dx*1 Qyy x)z;+ an(x)' (l )

The problem of solving Equation (8) consists of detérmining the most
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general expression for y which, if substituted into the left-hand side of (8), or if
operated on by (10), gives the prescribed right-hand side A(x). When a relation-
ship of the form y = u(x) satisfies Equation (8), it is conventional to say that
either the relation y = u(x) or the function u(x) is a solution of that equation.t

If all the coefficients a,(x), . . . , a,(x) were zero, the solution of Equation
(8) would be accomplished directly by n successive integrations, each integra-
tion introducing an independent constant of integration. Thus it might be
expected that the general solution of (8) also would contain n independent
arbitrary constants. As a matter of fact, it is known that in:any interval I in
which the coefficients are continuous, there exists a continuous solution to Equation
(8) involving exactly n independent arbitrary constants; furthermore, there are no
solutioks of Equation (8) valid in I which cannot be obtained by specrahzmg the
constants in any such solution.

It should be noticed that this is a property peculiar to linear differential
equations. To illustrate, the nonlinear differential equation

(dy\*  ,dy 4w 1
(E) —ZE+4y—-4x 1 {1an
is of first order. A solution containing one arbitrary constant is of the form
y=x—(x—c), (12)

as can be verified by direct substitution. However, this is not the most general
solution, since the function y = x also satisfies the differential equation but
cannot be obtained by specializing the arbitrary constant in the solution given.
The additional solution y = x is called a singular solution. Such solutions can
occur only in the solution of nonlinear differential equations.

We consider first the result of replacing the function (x) by zero in Equa-
tion (8). The resultlng differential equation, Ly = 0, is said to be homogeneous,
since each term in the equation then involves the first power @ of one of its
derivatives. In this case, from the linearity of the equation, it is easily seen that
any linear combination of individual solutions is also a solution. Thus, if n
linearly independent solutions u,(x), u,(x), . . ., u,(x) of the associated homo-
geneous equation '

Ly, =0 (13)
are known, the general solution of Equation (13) is of the form
Prx) = (@) + cpn()+ - + e = 3 e, (14)

where the ¢’s are the n required arbitrary constants. That is, all solutions of the
homogeneous equation associated with (8) are obtained by suitably specializing
the constants in Equation (14).

+Whereas a relationship of the implicit form '(x, ¥) = 0 also would be acceptable as a solu-
tnon, there is no need for this géfieTatization when the equation is linear.



