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A LONG HISTORY QUANTIZATION APPROACH TO
SCALAR AND VECTOR QUANTIZATION OF LSP COEFFICIENTS

C. S. Xydeas and K. K. M. So

Department of Electrical Engineering, University of Manchester, Dover Street, Manchester M13 9PL, United Kingdom.

ABSTRACT

It is essential that in low bit rate speech coding systems,
codec parameters are quantized with a minimal number of
bits without a corresponding reduction in the quality of the
decoded signal. In an effort to increase coding efficiency,
a new and general methodology for the quantization of
codec parameters, called Long History Quantization (LHQ),
has recently been proposed. LHQ, when applied in
conjunction with scalar quantization for the coding of LSP
coefficients in a CELP system, offers “transparent”
quantization at an average bitrate of 25 bits per frame. This
paper presents certain improvements to the above
LHQ-Scalar quantization scheme, which further reduce the
average LSP bit rate to about 22 bits per frame. In addition,
anew LHQ-Vector quantization scheme is proposed which
allows the transparent quantization of LPC coefficients
with only 19 bits per analysis frame.

1. INTRODUCTION

The line spectrum pair (LSP) coefficients have been
extensively used as an equivalent representation of the LPC
coefficients in medium and low bit rate speech coding
systems. As a consequence, several LSP quantization
schemes have been proposed in the past which exploit the
interframe [1,2,3] and intraframe [4,5] cosrelation of LSP
parameters. More recently, a general approach for the
adaptive quantization of codec parameters, called Long
History Quantization (LHQ), has been proposed. LHQ
exploits the constraints imposed on the signal by i) the
speech production mechanism characteristics of individuals
and ii) language and phonetic considerations [6].

This paper presents first certain improvements in the
LHQ-Scalar quantization (LHSQ) of the LSP coefficients
scheme reported in [6] and then combines LHQ with vector
quantizatioh in a new and efficient LHVQ coding of the LSP
coefficients. The general LHQ approach is briefly reviewed
in Section 2. The LHSQ and LHVQ schemes are described
in Section 3 and their compression characteristics are
discussed in Section 4.

2. LONG HISTORY QUANTIZATION (LHQ)

Conventional low bit rate coders operate on successive
speech frames and derive a set of parameters for each frame.
These parameters are quantized and used to drive a speech
synthesis model and thus produce an approximation of the

corresponding speech frame. Optimized scalar [5] and
vector [7] quantization is usually applied to model
parameters. In this case, quantizers are designed and
optimized according to long term statistics and are therefore
fixed rather than adaptive. Fixed quantization ignores the
fact that for each “signal event”, in a speech frame, it is
likely that another previous frame contains a very similar or
exactly the same signal event. LHQ exploits this long-term
redundancy present in the model parameters to obtain further
compression.

In particular, consider that E_ represents the kth specch
frame to be encoded and (P}, ,1=1, 2, ..., M are M sets
of model parameters “describing” E,.In addition, let E'y_;
and {P'y_;}; ,J=1, 2, ...; N be the N previously decoded
speech frames and the corresponding quantized parameter
sets respectively. A parameter set {P,}, can be LHQ-
quantized to one of the N {P',;}, parameter sets
representing part of the signal’s history. In this way, the
information transmitted regarding {P, }, is the index jof the
entry {P',_;}, of what is effectively an adaptive codebook
of size N. The LHQ approach can be applied to a single
parameter, individual sets of model parameters or
combinations of them. It can lead to fixed or variable bit
rate coding schemes and can considerably reduce the bit
rate of the underlying codec. LHQ can be used together
with conventional fixed scalar or vector quantization and
the choice between LHQ and fixed quantization is
transmitted in the form of a binary flag, Fy;, on a frame by
frame basis. Thus, {P,}, is first quantized, using a fixed
quantizer, to {P'', }, which is then compared to the quantized
entries {P',_;}; of the LHQ codebook. The system then
decides whether to transmit {P', },={P", }, with F,;=0or
the index J of the {P', },={P';_;}, assignment with F,=1.
Inthis case, the LHQ codebook search is based on quantized
parameter values and involves only the indices of the fixed
quantizer output levels. This leads to an effective codebook
search strategy which is discussed in the next section as a
specific application of LHQ to LSP parameters.

The performance of an LHQ scheme is determined by the
accuracy of the fixed scalar or vector quantizer employed
by the system, the size of the LHQ adaptive codebook and
the threshold values used in the LHQ codebook search. The
LHQ codebook is updated, in our experiments, using the
simple Least Recently Used (LRU) caching technique [8]
which maximizes the coding relevance of the information
stored in the codebook.
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Lsp ;aeﬂ‘ BBI:.I Lsp :ua. BBl:x “b'L:" . Dimension BB“,’
1 3 6 4 1 3 10
2 4 7 4 2 3 10
3 4 8 4 3 4 10
4 4 9 4
5 4 10 3

Table 1 Table 2
Bit allocation for 38-bit fixed scalar quantization Bit all for 30-bit fixed split-VQ

3. APPLICATION OF LHQ TO LSP COEFFICIENTS

LHQ has been applied, in conjuction with scalar (LHSQ) or
vector quantization (LHVQ), for coding 10 LSP coefficients.
These parameters are estimated every 20ms and they are
initially quantized using a total of 38 bits(scalar) or 30
bits(vector) per frame respectively, see Tables 1 and 2.

In general, the LHQ search algorithm “compares” and
*“attempts to match” the output index of the fixed quantizer
to those stored in the LHQ codebook. The LHSQ search
algorithm is described first and a discussion on the LHVQ
search procedure then follows.

Consider that SQ(O,), represents the index (quantization
output level number, SQ(0,), =1, ..., 2%») of the pth scalar
quantized LSP coefficient, C',,, in the kth LPC analysis
frame. In the same way, SQ(O,),, represents the index of
the pth element of the jth vector, é'k_,_, , stored in the LHQ
codebook.

The LHSQ search algorithm compares sequentially
{C",}spP=1,2,..,10 to the N codebook vectors
{C'w.;p}»J=1, 2, ..., N. This means that the process starts
by comparing SQ(O,), of C''y; to the index SQ(O,),,; of

k11 element of the first codebook vector. If
[SQ(0,), -SQ(0,),,;|ST,, where T, is a fixed integer
threshold, then ISQ( 2 )k -SQ(O,)MIST, is examined. Thus
the algorithm examines the mth, m=2, 3, ..., 10, inequality,

ISQ(0,), -SQ(0,)y4|S T, (1)

only if the (m-1)th inequality is satisfied. When (1) is not
satisfied, the search on the current codebook vector is
aborted and the next vector is tested. Furthermore, a
codebook entry is identified as a possible candidate to
represent {C";} if (1) is satisfied for all m=1, 2, ..., 10.
When none of the LHQ codebook vectors can be identified
to be useful, {C",, } is assigned to represent {C',, } and F,
is set to zero. On the other hand, one or several codebook
entries may satisfy the search criterion, and a spectral
distortion (SD) is formed for each candidate entry. In general,

N

@ =l

N
SD= J—I-Z[Wusk (oy)- |°8|o§k(°’| )]’ (dB) (2)

where S, (@,) and §k (®,) are the spectral values at frequency
w, of the original and “quantized” LPC spectrarespectively.
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N, denotes the number of spectral values used from O to 7x.
When several candidate vectors are available at the end of
the search process, the vector with minimum SD is selected.
This gives a single candidate codebook vector, and its SD
value is compared to a threshold value TSD which effectively
controls the “transparent” quantization of the input LSP
vectors. Fy is set to 1 only when

SD < TSD 3)

A similar search procedure is performed in the LHVQ
coding of the LSP coefficients. Let VQ(O,), represent the
index of the pth vector-quantized LSP sub-vector, C"', ,, in
the kth LPC analysis frame, p=1, 2, 3. In the same way,
VQ(O,),. represents the index of the pth sub-vector of the
jth vector, C',,, stored in the LHQ codebook.
Unfortunately, (1) cannot be used as the search criterion in
this case because the absolute difference between the indices
of two LSP sub-vectors does not usually provide any
information on their spectral discrepancy. In order to utilize
the {VQ(O,),.;} indices in the LHVQ search process, anew
search method has been devised. During the fixed vector
quantization of {C,,};p=1,2,3, N, best candidate
indices, {VQ(Op,q)x ; q=1, 2, ..., Ns}, for each p sub-vector

are selected. The search commences with the possible__ ..

matching of any of the N, candidate indices. {VQ:5i )},
produced from the quantization of the first sub-vector, Cy,p,
to the {VQ(O, )y} elements of the LHVQ codebook. The
same search process is then repeated for the second and
third sets of N, candidate indices with the corresponding
{VQ(02,q)k-j} and {VQ(Os3,q)k-j} subsets of the LHVQ
codebook. The entries of the LHVQ codebook for which

{VQ(O p) 4} €{VQ(Opa)x ;4 =1, 2, ..., Ns} (C))

is satisfied for all 3 sub-vectors are considered further, in terms of
their SD and the one with minimum SD is subsequently tested for
satisfying (3). It is only then Fy is set to 1 indicating the use of
LHVQ in the quantization of the input frame.

4. RESULTS AND DISCUSSION

The proposed LHSQ and LHVQ schemes have been evaluated
using computer simulation and their compression potential
examined. When coding 10 LSP coefficients obtained from
a large database, the performance of a conventional scalar
LSP quantizer and a three-way split vector quantizer is
shown in Figure 1, in terms of Average Spectral Distortion
(ASD) measure and the number of bits allocated every
20ms, where

N,
- _1_2
ASD = - ) SD (dB) S

and the ASD is measured over N,=12800 frames.
Transparent quantization is defined to have been obtained
when i) the ASD < 1dB, ii) less than 2% of decoded frames
satisfy 2dB < SD < 4dB and iii) none of the decoded frames
has SD>4dB. This is achieved with 32 or more bits per
frame in the case of scalar quantization and 24 or more bits
if vector quantization is to be used. With bit allocations of
38 bits and 30 bits for fixed scalar and vector quantization
respectively, ASD values of 0.631 dB and 0.647 dB are obtained.



13 — :
3.00 1 1 & & 1 B
} 1 —e— Tp=2,LRU,N=512 A
— &— SQ(ASD) 12 4 ——gm~ Tp=2, LRU, N=1024 ]
—a— VQ(ASD) ] [ / /
1 11 ve /
J L 7
Y g
~2.00 - =
3 ] 2 10
é ] 3 09
T e &
£1.00 $ 03 4
@ T 7
& \ < ]
¢ 0.7
z 3
06 Frwerfer vrrriree
. T SR S R 10 11 12 13 14 15 16 17 18 19 20 21
20 25 %0 25 40 45 TSD Threshold value (dB)
Bit Allocation (bits/frame)
Figure 2
Figure 1
Figures 2, 3, 4 and 5 refer to the LHSQ coding of the LSP
coefficients. Figure 2 shows the ASD performance of the 18 1 1 T : 1
system for different values of the TSD threshold used in the 17 3o —@—  Tp=2, TSD=w
codebook search and for two codebook sizes, i.e. 512 and e— Tp=2, TSD=16dB y
1024. Tp is set to 2 and the LRU caching technique is used ol 7
to update the codebook. As expected, higher TSD values 15 3 e
relax the distortion constraint, imposed by the the 3 }/
quantization algorithm, on selecting previous codebook 14 4

entries, and allow the ASD of the system to increase. A TSD
value of 1.6dB, however, ensures that ASD is less than 1dB.
Using this TSD value and also TSD=ee, which represents
the system reported in [6], Figures 3, 4 and 5 illustrate the
LHSQ performance, for different codebook sizes, in terms
_of ASD, Average Bit Rate (AvBR) and Percentage of Frames
(%) with =1, respectively. Transparent LSP quantization is
achieved with TSD=1.6 dB at an average bit rate of 22.4 bits
per frame. Notice that the TSD assumes different “optimum™ 08
values when the fixed quantization bit allocation given in
Table 1 is modified.

10 J
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Average Spectrai Distortion (dB)
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The performance of the LHVQ scheme described in the 2 3 4 5 6 7 8 9 10 1 12 g
prevjous section is summarized in Table 3. Again, TSD is (Codebook size = 7
set to 1.6dB, while Ny = 60. It has been found that LHVQ
Khieves transparent LSP coding with an average bit rate of
19 bits per frame. Figure 3

Notice that both the LHSQ and LHVQ algorithms described
in this paper represent a particular variable bit rate
implementation of the LHQ approach, which can easily be
integrated within the framework of an LPC based constant
bit rate codec. Furthermore, the codebook search in both
algorithms is mainly based on the comparison of codeword
indices and may therefore be implemented efficiently.
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Cadebook size, N ASD (dB) % eof Fuaml Average Bit Rate
16 0.791 34.49 22.03
32 0.804 36.25 21.94
64 0.829 39.37 21.55
128 0.866 44.19 20.84
256 0.916 50.12 19.97
S12 0.968 56.37 19.16
1024 1.019 61.81 18.64
Table 3
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EFFICIENT CODING OF LPC PARAMETERS USING ADAPTIVE PREFILTERING
AND MSVQ WITH PARTIALLY ADAPTIVE CODEBOOK

Y. Tanaka and T. Taniguchi

Fujitsu Laboratories Ltd.
1015 Kamikodanaka, Nakahara-ku, Kawasaki, 211 Japan

ABSTRACT

In this paper, we propose an efficient vector quantization
scheme and a new LPC analysis scheme, both of which exploit
interframe correlation in the successive spectrum envelope of
speech signals. The first quantization scheme proposed is a
multi-stage vector quantization of LSP parameters with a par-
tially adaptive codebook (MSVQ-AC). The second new algo-
rithm is an LPC analysis scheme, with closed-loop adaptive pre-
filtering (LPC-PF), which realizes temporary higher order analy-
sis than the standard LPC with a few additional transmission
bits. A combined system of the LPC-PF and 2-split, 2-stage VQ
with the adaptive codebook can quantize 10-th order LSP parame-
ters at around 23 bits/frame, realizing sufficient quality and
reasonable complexity.
1. INTRODUCTION

Linear predictive coding is widely used as a short time spectral
envelope estimation in various speech processing applica-
tions. For low bit rate speech coding, it is important to quantize
LPC parameters using as few bits as possible without sacrificing
the speech quality and within a reasonable complexity. Various
quantization schemes have been proposed for such objectives.
Scalar quantization of individual coefficients results in accept-
able levels of spectral distortion at 32 to 36 bits/frame. Vector
quantization is a more efficient scheme which utilizes intraframe
correlation among the LPC parameters [1]. For higher effi-
ciency, it is necessary to exploit the interframe correlation of
successive parameter sets. Shoham studied VQ with vector
predictive quantization (VPQ) [2]. In their VQ, the current spec-
tral envelope is predicted using past quantized spectra and its pre-
diction residual spectrum is quantized. Matrix quantization (MQ)
is a direct scheme to quantize a set of parameter vectors [3]. MQ
is a-very expensive scheme, however, in terms of computation
and memory and in that it introduces a large encoding delay. Far-
vardin et al. studied two-dimensional DCT coding of LSP vectors
[4]. Encoding is possible at 21 bits/frame by using appropriate
bit allocation based on the distribution of each DCT coefficient.
However, this scheme also introduces a large encoding delay.
Grass et al. studied vector-scalar quantization with an adaptive
codebook, which does not require extra transmission informa-
tion or encoding delays [S]. We have extended this idea for a
multi-stage VQ framework as described in Section 2.

On the other hand, an LPC analysis itself is usually per-
formed in a memoryless fashion, and no one has yet considered
using the interframe correlation of spectral envelope in the
analysis stage.

In this paper, we propose a new efficient vector quantiza-
tion scheme and a new LPC analysis scheme, both of which
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exploit interframe correlation of the spectrum. The new quanti-
zation scheme is a multi-stage vector quantization with a par-
tially adaptive codebook (MSVQ-AC). The first stage codebook
has a small adaptive part as well as a large fixed part, which stores
the quantized parameters of the past frames.

To exploit the interframe correlation in the analysis
stage, a new LPC analysis scheme called LPC-PF, which em-
ploys closed-loop adaptive prefiltering prior to LPC analysis, is
also proposed.

This paper is organized as follows. In Section 2, as a
practical implementation of MSVQ-AC, we present a 2-split, 2-
stage VQ with an adaptive codebook for 10-th order LSP parame-
ters. In Section 3, we present a detailed algorithm and do a per-
formance evaluation of LPC-PF.

2. MULTI-STAGE VQ WITH PARTIALLY
ADAPTIVE CODEBOOK (MSVQ-AC)

2.1 Configuration
A multi-stage quantization structure can make use of a
partially adaptive codebook [5] to exploit interframe correla-
tion. A multi-stage VQ configuration, with this partially adap-
tive codebook, is shown in Fig. 1. The codebook of first stage
VQ has fixed and adaptive parts. The adaptive part stores the
quantized vectors of the past (n-J)-th frames, where J is the
adaptive codebook size. It is sufficient to add a small size adap-
tive part to a fixed codebook to efficiently exploit interframe
correlation, because a coefficient vector with the highest corre-
lation to that of the current frame can be usually found within the
parameter sets of the most recent frames.
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Figure 1. MSVQ with partially adaptive codebook

Before designing the VQ, we assumed that more than 20
bits/frame will be necessary to quantize 10-th order LSP parame-
ters with an acceptable distortion even if a highly efficient VQ is
used. Therefore, to reduce the VQ's computational complexity
and memory requirements to within a reasonable range, we con-
sidered it preferable to decompose the entire quantization proc-
ess into more than three parts using methods, such as MSVQ or
split VQ.
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In our study, we have developed a 2-split, 2-stage VQ (Fig.
2). At the first stage, the 10-dimensional LSP vector is split into
2 subvectors, one of length 4 (lower band) and the other of length
6 (higher band). Each subvector is separately quantized. Split VQ
has been reported as an efficient scheme for LSP quantization due
to its localized spectral sensitivity to quantization error [6]. At
the second stage, the 10-dimensional error vector between the
input vector and the reconstructed vector from the first stage VQ
is quantized. The distance measure used in the search of this VQ is
the same as in reference [6].

In the first stage split VQ, both the lower band (CB1-L)
and higher band (CB1-H) codebooks have small independent
adaptive parts. This configuration allows separate searches of the
adaptive codebooks in the lower and higher bands.
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Figure 2. 2-split, 2-stage LSP-VQ
with partially adaptive codebook

2.2 Codebook design

Fixed part of each codebook is designed by using the LBG
algorithm on the training data. A weighted Euclidian distance is
used for the design as well as for the codebook search. For training
the second stage codebook, we found that the quantization error
vectors of the first stage, whose spectral distortion is greater than
a certain threshold value, are useful for the training data to reduce
the percentage of outliers. We used a simulation to determine the
appropriate threshold of 1.5 dB.

2.3 Codevector reconstruction in split VQ

In a sequential search of CB1-L and CB1-H, invalid un-
stable combinations of codevectors are present which should be
excluded in the CB1-H search. To prevent the loss of valid code-
book size from this, CB1-H codevectors are reconstructed. In this
method, unstable codewords are modified to satisfy the LSP pa-
rameter stability conditions by nonlinearly transforming each
coefficient according to the selected CB1-L codevector.

2.4 Evaluation

Thirty minutes of Japanese speech was used as the data-
base in this study. The first 25 minutes were used for codebook
training and the last 5 minutes were used for evaluation. 10-th

order LPC analysis, based on the autocorrelation method with
high frequency compensation, was performed every 20 ms using
a 20 ms Hamming window.

The performance is summarized in Table 1. Average spec-
tral distortion (SD) and outlier percentage (calculated for frames
having SD in the range of 2-4 dB and for SD above 4 dB) are used
for evaluation. The VQ with second stage codebook training
using first stage outliers reduces the outliers percentage with
slight SD degradation. Average spectral distortion equivalent to
30 bits/frame SQ was achieved at 24 bits/frame (8 bits for each
codebook) for the proposed VQ.

The appropriate adaptive codebook size was determined
experimentally. Improvement in performance saturated when the
size was larger than 4. So, we set the size to 4 in the following
simulation. Using the adaptive codebook significantly reduces
outliers as well as average spectral distortion. The proposed 24
bits/frame VQ seems to be sufficient for speech coding applica-
tions.

Table 1. Performance of various LSP quantizers

Quantization s Qutlier (%)
Bits/20 ms|SD (dB)
scheme e 2dB<SD<4dB | 4dB<SD
4 | 097 1.87 0.0
5g 32 112 426 0.0
30 123 5.63 0.01
28 128 9.36 0.04
IMSVQ 24 121 581 0.0
2-split VQ % 125 583 0.0
2-split, 2-stage VQ | 24 123 381 0.0
2-split, 2-stage VQ
it 2-stag 24 125 3.53 0.0
2-split, 2-stage VQ | 23 126 319 0.0
with OT. &AC. | 24 | 119 1.90 0.0
M=2)| 26 110 0.81 0.0

O.T.: 2nd stage codebook is trained by outliers from the 1st stage VQ
A.C.: Adaptive codebook

2.5 Complexity

The complexity of the proposed 24 bits/frame VQ (with
three 8-bit codebooks) is 8 times smaller than that of the conven-
tional 2-split VQ, since it only requires three 8-bit codebook
searches rather than two 12-bit codebook searches. Moreover,
the memory required for codebook storage is also reduced from 40
K words to 5 K words.

3. LPC ANALYSIS WITH ADAPTIVE
PREFILTERING (LPC-PF)

3.1 LPC-PF configuration

This section presents an efficient LPC analysis scheme,
LPC-PF, which is an alternate scheme for exploiting interframe
correlation. The LPC-PF configuration is shown in Fig. 3. In this
scherne, LPC analysis and quantization are included in an adaptive
feedback loop. The input speech signal is first fed inio a low order
prefilter, which is a kind of aa inverse filter whose coefficients are
determined from past quantized LPC parameters. This prefilter
preceding LPC analysis performs rough spectral flattering of the
input signal. The overall spectrurn envelope, H(z), estimated by
this system is represented by the cascade characieristics of the
prefilter P(z) and the following LPC analysis filter A(z) as fol-
lows.
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