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PREFACE

The idea for this book came from the Mathematics Department of Texas A&M Univer-
sity. A large number of their students take Engineering and Physics courses concur-
rently with calculus and these courses require the concept of vectors to explain
velocity, force, and so on. The traditional calculus curriculum postpones the study of
vectors until the third semester; consequently, many students learn vector concepts
from Physics or Engineering departments during their freshman year without any rein-
forcement from Mathematics departments.

Al Boggess and his colleagues at Texas A&M University asked me to write a version
of my calculus text that would introduce vectors at a very early stage and integrate
them throughout. I thought that idea made a lot of sense, but I was involved in another
writing project at the time and so I suggested that they write the first draft themselves.
They drew upon material from my book Calculus, Early Transcendentals, Third Edi-
tion (henceforth abbreviated as ET) and rearranged it to fit their curriculum, providing
new exposition and new exercises where needed. They class-tested the new version for
two years. I then took part in the writing, revising the manuscript in collaboration with
them. The result is this Preliminary Edition of Calculus: Early Vectors.

Although the impetus for this book came from Texas A&M, a number of other uni-
versities have expressed interest in it as well. Before we publish the first edition of this
book, I would like to have input from other potential users with respect to both broad
structure and fine details. If you have any comments or suggestions, particularly on the
best way of integrating vectors into first-semester calculus, please send them to me in
care of my publisher, Brooks/Cole Publishing Company, 511 Forest Lodge Road, Pacific
Grove CA 93950, or e-mail to info@brookscole.com.

The goal of Calculus: Early Vectors is to introduce vectors early in the first semester,
in a manner that does not dramatically change the rest of the calculus curriculum. Vec-
tors are introduced in two stages. Chapter 1 introduces two-dimensional vectors along
with basic operations, including the dot product, and two-dimensional vector func-
tions. Three-dimensional vectors (along with three-dimensional geometry and cross
products) are treated in Chapter 11 (covered at the end of the second semester or begin-
ning of the third). Our experience has shown that a full treatment of three-dimensional
vectors typically overwhelms the average first-semester calculus student. A thorough
treatment in Chapter 1 would also postpone discussion of other calculus topics so that
the resulting course would no longer resemble the traditional first-semester course.

® Chapter [ on vectors is relatively short. It introduces two-dimensional vectors along
with basic vector operations, including sums, scalar multiplication, dot product, and
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projection. Applications to problems involving force and work are discussed in detail.
In fact, the definition of the dot product is motivated by the need to compute the work
done by a force that does not point in the direction of motion.

B Vector functions and parametric curves are introduced in Chapter 1 in the context
of projectiles. Limits and rates of change of such functions are discussed in Chapter 2,
immediately following the development of the scalar case.

® Derivatives of vector functions, tangent vectors, and tangents to parametric curves
are treated in Chapter 3. (See Sections 3.7 and 3.9.)

B Chapter 4 (on exponential functions and logarithms) is almost identical to the corre-
sponding chapter of ET.

B Chapter 5 (applications of differentiation) contains the streamlined approach to
graphing that I have used in Calculus: Concepts and Contexts. In addition to a more
reformed approach that takes advantage of technology (where appropriate), this
streamlined approach allows the typical first-semester calculus course to cover topics
through Chapter 6 (integration), corresponding roughly to the topics of most traditional
first-semester courses.

® Chapters 7-9 (techniques of integration and their applications) are largely un-
changed from ET.

@ Chapter 10 (series) uses the more streamlined approach contained in Calculus: Con-
cepts and Contexts.

B Three-dimensional vectors and geometry are treated in Chapter 11. Here the basic
concepts developed in Chapter 1 are reviewed quickly and generalized to three dimen-
sions. We view this repetition as giving the important reinforcement this concept needs
because it is so heavily used in Physics and Engineering. Cross products are then intro-
duced with the notion of torque serving as the motivation. A student who has trans-
ferred from a more traditional first-semester calculus course that does not contain
vectors will be introduced to all the vector concepts from Chapter 1 in the three-
dimensional setting covered in Chapter 11.

B Chapters 12-14 (partial derivatives, multiple integrals, and vector calculus) are
largely unchanged from ET with the following exception. Polar and spherical coordi-
nates are now introduced in Chapter 13 (multiple integrals) immediately before they
are needed for integrals in polar coordinates and spherical coordinates.

For many years I have experimented with calculus laboratories for my own students,
first with graphing software for computers, then with graphing calculators, and finally
with computer algebra systems. Those of us who have watched our students use these
machines know how enlivening such experiences can be. We have seen from the ex-
pressions on their faces how these devices can engage our students’ attention and make
them active learners.

Despite my enthusiasm for technology, I think there are potential dangers for mis-
using it. When I first started using technology, I tended to use it too much, but then I
started to see where it is appropriate and where it is not. Many topics in calculus can be
explained with chalk and blackboard (and reinforced with pencil and paper exercises)
more simply, more quickly, and more clearly than with technology. Other topics cry out
for the use of machines. What is important is the appropriate use of technology, which
can be characterized as involving the interaction between technology and calculus. In
short, technology is not a panacea, but, when used appropriately, it can be a powerful
stimulus to learning.
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VISUALIZATION

PROBLEM SOLVING

This textbook can be used either with or without technology and I use two special
symbols to indicate clearly when a particular type of machine is required. The icon g
indicates an example or exercise that requires the use of either a graphing calculator or
a computer with graphing software. (Section 3 in Review and Preview discusses the
use of these graphing devices and some of the pitfalls that can arise. Section 5.4 is a
good example of what I mean by the interaction between technology and calculus.) The
symbol is reserved for problems in which the full resources of a computer algebra
system (like Derive, Maple, or Mathematica) are required. In all cases we assume that
the student knows how to use the machine —we rarely give explicit commands.

Some of the exercises designated by B§ or require considerable time for their
completion. Instructors should therefore consult the solutions manual to determine the
complexity of a problem before assigning it. Some of those problems explore the shape
of a family of curves depending on one or more parameters. Other such projects in-
volve technology in very different ways. See, for instance, pages 651 (logistic se-
quences) and 524.

One of the themes of the calculus reform movement is the Rule of Four: Topics should
be presented verbally, numerically, graphically, and symbolically, wherever possible.
See pages 150 and 588 for examples of how the Rule of Four comes into play. You will
also see that I include substantial work with tabular functions and numerical estimates
of sums of series.

Many examples and exercises promote visual thinking. Given the graph of a func-
tion, I think it is important for a student to be able to sketch the graph of its derivative
(page 152) and also to sketch the graph of an antiderivative (page 348) in a qualitative
manner. See pages 194, 208, 232, 344, 419, 428, 507, 657, 696, 747, 872, and 891 for
other examples of exercises that test students’ visual understanding.

There are hundreds of new computer-generated figures that illustrate examples.
These are not just pretty pictures—they constantly remind students of the geometric
meaning behind the result of a calculation. I have also tried to provide more visual in-
sight into formulas and their proofs (see, for instance, pages 162 and 290).

My educational philosophy was strongly influenced by attending the lectures of
George Polya and Gabor Szego when I was a student at Stanford University. Both Polya
and Szego consistently introduced a topic by relating it to something concrete or famil-
iar. Wherever practical, I have introduced topics with an intuitive geometrical or physi-
cal description and attempted to tie mathematical concepts to the students’ experience.

I found Polya’s lectures on problem solving very inspirational and his books How to
Solve It, Mathematical Discovery, and Mathematics and Plausible Reasoning have be-
come the core text material for a mathematical problem-solving course that | have
instituted and taught at McMaster University. I have adapted these problem-solving
strategies to the study of calculus both explicitly, by outlining strategies, and implicitly,
by illustration and example.

Students usually have difficulties in situations that involve no single well-defined
procedure for obtaining the answer. I think nobody has improved very much on Polya’s
four-stage problem-solving strategy and, accordingly, I have included in this edition a
version of Polya’s strategy in Section 4 of Review and Preview, together with several
examples and exercises involving precalculus material. I have also rewritten the solu-
tions to certain examples in a more patient manner to make the problem-solving prin-
ciples more apparent. (See, for instance, Example 1 on page 215.)

The classic calculus situations where problem-solving skills are especially impor-
tant are related rates problems, maximum and minimum problems, and techniques of
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TO THE STUDENT

Reading a calculus textbook is different from reading a
newspaper or a novel, or even a physics book. Don’t be dis-
couraged if you have to read a passage more than once in
order to understand it. You should have pencil and paper at
hand to make a calculation or sketch a diagram.

Some students start by trying their homework problems
and only read the text if they get stuck on an exercise. I sug-
gest that a far better plan is to read and understand a section
of the text before attempting the exercises. In particular,
you should study the definitions to see the exact meanings
of the terms.

Part of the aim of this course is to train you to think
logically. Learn to write the solutions of the exercises in a
connected step-by-step fashion with explanatory words and
symbols—not just a string of disconnected equations or
formulas.

The answers to the odd-numbered exercises appear at
the back of the book, in Appendix L. There are often sev-
eral different forms in which to express an answer, so if
your answer differs from mine, don’t immediately assume
you are wrong. There may be an algebraic or trigonometric
identity that connects the answers. For example, if the an-
swer given in the back of the book is v/2 — 1 and you ob-
tain 1/(1 + +/2 ), then you are right and rationalizing the
denominator will show that the expressions are equivalent.

The symbol 5§ indicates an example or exercise that re-
quires the use of either a graphing calculator or a computer
with graphing software. (Section 3 in Review and Preview
discusses the use of these graphing devices and some of the

pitfalls that you may encounter.) The icon is reserved
for problems in which the full resources of a computer alge-
bra system (like Derive, Maple, or Mathematica) are re-
quired. You will also encounter the symbol @ which
warns you against committing an error. I have placed this
symbol in the margin in situations where 1 have observed
that a large proportion of my students tend to make the
same mistake.

Calculus is an exciting subject; I hope you find it both
useful and interesting in its own right.

B ANOTE ON LOGIC

In understanding the theorems it is important to know the
meaning of certain logical terms and symbols. If P and Q
are mathematical statements, then P = Q is read as “P im-
plies 0” and means the same as “If P is true, then Q is
true.” The converse of a theorem of the form P = Q is the
statement ) = P. (The converse of a theorem may or may
not be true. For example, the converse of the statement “If
it rains, then I take my umbrella” is “If I take my umbrella,
then it rains.”) The symbol <> indicates that two state-
ments are equivalent. Thus P < @ means that both
P = @ and Q = P. The phrase “if and only if” is also
used in this situation. Thus “P is true if and only if Q is
true” means the same as P < Q. The contrapositive of a
theorem P = Q is the statement that ~Q => ~P, where
~ P means not P. So the contrapositive says “If Q is false,
then P is false.” Unlike converses, the contrapositive of a
theorem is always true.

xi
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