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PRELIMINARIES

1. A historical survey of the theory of inverse semigroups shows that there
have been two foci of the origin and development of inverse semigroups: the
Soviet and the Western schools, initiated by Wagner and Preston, respectively.

2. A list of needed concepts from the theory of partially ordered sets, and
in particular lattices, is collected first and is used freely throughout the text.

Simple properties of some of these concepts are also proved if they will be
needed later.

3. " Definitions related to semigroups in general such as identities and zeros,
subsemigroups, idempotents, generation, orthogonal sum, and so on, are listed
next. The semigroups of partial and full transformations are also introduced.

4. Homomorphisms and their close relatives congruences are introduced
together with several ramifications. An explicit expressxon for the congruem.e
generated by an arbitrary relation on a semigroup is derived.

5. Ideals and their variants are introduced, as well as the kernel of a
semigroup. Certain simple properties of these concepts are also established
including a characterization of 0-simple semigroups.

6. Green’s relations are introduced and their most important properties

are established. These include the structure of a ®-class and the behavior of
idempotents in relation to %-classes.

7. Regular elements and semigroups admit several characterizations; so do

completely regular elements. Several auxiliary results are proved, including
Lallement’s lemma.

8. Concepts related to the translational hull are introduced, and a few of
their properties are established.

9. A modest portion of the theory of ideal extensions is discussed, includ-
ing general extensions, strict and pure extensions, and dense extensions. The
relationship with the translational hull plays here an essential role.

10. Free semigroups and free semigroups with involution are defined and

constructed, the latter by a construction which is part of the construction of a
free group.
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11. Identities and varieties are discussed in some detail. The expression for
the join of two varieties, and for the variety generated by a semigroup, are
explicitly found. The relationship of fully invariant congruences on a free
semigroup with varieties is established.

12. The concepts related to amalgamation are introduced including the
weak, special, and strong amalgamation properties. Two useful lemmas con-
cerning these notions are proved.

13. The free product and the amalgamated free product of semigroups are

discussed in some detail. Several universal properties of these concepts are
established.

14. A short list of needed definitions from category theory is given.

L1 INTRODUCTION

Inverse semigroups were introduced by Wagner in 1952 as regular semigroups
with commuting idempotents. In 1953 Liber proved that Wagner’s definition is
equivalent to the requirement that every element has a unique inverse. Wagner
called inverse semigroups “generalized groups” and he and some of his
followers have used this term since that time. The term “inverse semi-groups”
was introduced by Preston who independently discovered this class of semi-
groups in 1954. -

From their inception to the present day, inverse semigroups have attracted a
wide attention among workers in semigroups. Their popularity has several
objective and subjective reasons. .

In the first place, the closeness of inverse semigroups to groups made it
possible to search for structure theorems vaguely modeled on those in group
theory. Even though this approach had only a limited success, groups still play
a decisive role in important structure theorems for various classes of inverse
semigroups. Although the similarity of inverse semigroups and groups is not as
substantial as it may appear on the first examination, there is an important
analogy between them. Inverse semigroups represent an abstraction of the
properties of sets of one-to-one partial transformations closed under composi-
tion and inversion just as groups play that type of role for permutation groups.
This fact has actually been the leitmotiv and the focus of attention of the
Saratov school of inverse semigroups (or should we say “generalized groups”?)
headed and inspired by Wagner and by Schein.

In the second place, the simple and esthetically pleasing axioms for inverse
semigroups have exercised a certain charm upon many researches in the field of
semigroups. Many structure theorems and concepts for various classes of
regular semigroups have much simpler formulations for the corresponding
classes of inverse semigroups. Such inverse semigroups as the bicyclic semi-
group (which has been rediscovered many times) and Brandt semigroups enjoy
properties of great value in the study of other classes besides inverse semi-
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groups. It is this abstract approach that was adopted by Preston and pursued
by Munn, McAlister, Reilly, and others. The valuable contributions by Clifford
antedate these authors and concern the structure of inverse semigroups belong-
ing to certain special classes.

These are some of the principal movers of the theory and some of the
objective reasons for the attention paid to inverse semigroups. The subjective
reasons for the considerable development of the theory of inverse semigroups
can be found in the magnetic personalities of the prime movers: Wagner and
Schein created a following in the Soviet school of inverse semigroups, Preston
and Munn in the school of the West.

Research activity in inverse semigroups has been both intensive and exten-
sive. On the intensive side, deep structure theorems abound for special classes
of inverse semigroups. Let us recall only a few jewels: Clifford’s theorems for
semilattices of groups and for Brandt semigroups, Reilly’s theorem for bisim-
ple w-semigroups and McAlister’s theorem for E-unitary inverse semigroups.
In this special category belong the Wagner and the Munn representations. On
the extensive side, the number of papers dealing entirely or partly with inverse
semigroups is a large one. The bibliography at the end of this text represents
an attempt to collect all the items dealing primarily with or bearing upon
inverse semigroups.

The following is a concise discussion of the topics covered in various
chapters.

1. An extensive collection of concepts, and some of their properties,
concerning semigroups in general make up a chapter on preliminaries. In
particular, the following topics are discussed: semigroups, congruences and
homomorphisms, ideals, Green’s relations, regularily, the translational hull,
ideal extensions, free semigroups, varieties, amalgamation, and free products.
The chapter starts with the needed definitions from the theory of partially
ordered sets and ends with a list of needed concepts from category theory.

II. Some of the important, and widely researched, classes of inverse
semigroups include Clifford semigroups, Brandt semigroups, strict inverse
semigroups, Bruck semigroups over monoids, and Reilly semigroups. These
classes harbor some of the most important constructions of the theory and
provide suitable examples exhibiting various phenomena discussed in the
succeeding chapters.

1II. Congruences on inverse semigroups were first described by Preston; a
different approach was later devised by Scheiblich. In the study of the
congruence lattice, the initial steps of Reilly and Scheiblich play a significant
role. Of all the classes of semigroups for which congruences have been
investigated, the study of congruences on inverse semigroups has been most
profitable. In fact, all the important structure theorems for inverse semigroups
are based on various special congruences.

IV. Inverse semigroups admit an analogue of the Cayley theorem in group
theory, namely the Wagner representation by one-to-one partial transforma-
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tions. The Munn representation is a homomorphism of an inverse semigroup
into the inverse semigroup of iscmorphisms between principal ideals of its
semilattice of idempotents. Congruence-free inverse semigroups admit several
interesting characterizations. The general theory of representations of inverse
semigroups by one-to-one partial transformations on a set, due to Schein,
exhibits many features akin to those of group representations by permutations.

V. The translational hull of an inverse semigroup is again an inverse
semigroup, a result first proved by Ponizovskil. Related to the subject of the
translational hull are the two hulls C(S) and $ designed by Schein and
McAlister, respectively. The translational hull of a Clifford semigroup admits a
suitable Clifford representation. For Brandt semigroups the translational hull
is sufficiently transparent so that one may construct ideal extensions of these
semigroups in great detail.

V1. Just as in the case of group extensions, it is natural to consider
conjugate extensions of inverse semigroups. Treating these extensions, one is
led to the conjugate hull of an inverse semigroup, analogous to the automor-
phism group of a group. Normal extensions of inverse semigroups represent a
close analogue of the Schreier group extensions. They were initially studied by
Petrich, but a-general solution was furnished by Allouch. The theory of normal
extensions runs somewhat parallel to the Schreier theory with the added
complication of a partition of idempotents.

Vil. The McAlister structure theorem for E-unitary inverse semigroups in
terms of P-semigroups certainly dominates most treatments of general or
special E-unitary inverse semigroups. An alternative construction for these
semigroups was offered by Petrich, Reilly, and Zitomirskil. The structure of
F-inverse semigroups was described by McFadden and O’Carroll. This rela-
tively new field is already rich in significant achievements.

VIII. Even though Wagner proved the existence of free inverse semigroups
rather early, it was Scheiblich who provided for it a concrete construction. His
work caused a burst of activity which produced improvements in his construc-
tion as well as other descriptions of free inverse semigroups. The underlying
ideas of the McAlister P-theorem have much in common with Scheiblich’s
work. Jones established some remarkable properties of free inverse semigroups.

IX. Free monogenic inverse semigroups were first described by Gluskin.
Much later, alternative descriptions followed, the simplest one being by
Scheiblich as a subdirect product of two copies of the bicyclic semigroup.
Congruences and various properties of these semigroups were investigated in
some detail.

X. Bisimple inverse monoids exhibit many features reminiscent of groups.
The first construction of these semigroups was offered by Clifford in an early
paper. Since then they attracted the attention of many researches. Munn and

"McAlister provided alternative constructions, and Reilly modified Clifford’s

construction to describe bisimple inverse semigroups.
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XI. Inverse semigroups whose idempotents form an w-chain are said to be
w-regular. The main contributors to deciphering the structure of these semi-
groups were Reilly, Ko¢in, and Munn. Their structure is so well elucidated that
one is able to answer many questions concerning these semigroups. These
results stimulated much interest in inverse semigroups with some restrictions
on idempotents.

XI1I. Varieties of inverse semigroups is a subject of recent origin but it
already includes some deep results. The joins and meets of an inverse semi-
group variety with the variety of groups provide the first insight into the
structure of the lattice of inverse semigroup varieties. These results and the
structure of the lowest three levels of the lattice are due to Kleiman. Djadtenko

investigated the so-called small variceties and Reilly the completely semisimple
varieties.

XIII. Almost all important results on amalgamation of inverse semigroups
are due to Hall. He proved, in several different ways, that the class of inverse
semigroups has the strong amalgamation property. In fact, he characterized
precisely, up to group varieties, which inverse semigroup varieties have the
(weak) strong amalgamation property. An alternative approach to the treat-
ment of amalgamation of inverse semigroups was contributed by Howie.

XIV. One of the first attempts to “construct” all inverse semigroups is that
of Schein by means of a Croisot groupoid, a partial order on it, and partial
products. Meakin devised a similar approach based on a Croisot groupoid, a
semilattice structure on its idempotents and “structure mappings” among some
of the R-classes of the groupoid. These constructions have theoretical, rather
than practical, value showing to what extent some of the ingredients of an
inverse semigroup determine the semigroup itself.

Various chapters may be grouped as follows. Chapter I consists of pre-
liminaries. Chapter II provides basic special classes and constructions and
concerns the structure of the semigroups in these classes. Chapters III and IV
treat special aspects concerning all inverse semigroups; similarly Chapters V
and VI concern several hulls and extehsions of general inverse semigroups.
Chapters VII to XI contain studies of the structures of inverse semigroups
belonging to some special classes (hence are of the same general character as
Chapter II). Chapters XII to XIV can be characterized as global analysis from
three different points of view; they again concern all inverse semigroups.

Chapters are denoted by Roman numerals, sections by the chapter number
and an Arabic numeral, and statements by yet another Arabic numeéral.
References within chapters indicate only the section and statement numbers,
say 2.3; references to other chapters bear full information, say VIL.2.3. The
bibliography includes some papers dealing onnj marginally or not at all with
inverse semigroups, but whose content may be bf interest in our development.
It excludes all announcements and conference reports, with a few exceptions
when these items are of particular interest.
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L2 PARTIALLY ORDERED SETS

This is a brief compendium of concepts and simple properties related to
partially ordered sets and more particularly lattices.

1.2.1 Definition

If X is any set, then any subset of the Cartesian product X X X is a relation on
X. A partially ordered set ( X, <), to be simply denoted by X, is a pair where X
is a nonempty set and < is a reflexive, antisymmetric, and transitive relation
on X. .

Now let X be a partially ordered set. If the greatest lower bound (respec-
tively least upper bound) of two elements a and 8 of X exists, we denote it by
a A B (respectively a V 8) and call this element the meet (respectively the
Jjoin) of a and B. If any two elements of X have a lower bound in X, then X is
lower directed. 1f any two elements of X have a meet, then X is a lower
semilattice.

If Y is a nonempty subset of X which is a semilattice under the order
induced on it by the order of X, then Y is a subsemilattice of X. If any two
elements of X have a meet and a join, then X is a lattice. If Y is a subset of X
which has a greatest lower bound, the latter is denoted by AY or A ., and
is called the meer of Y; analogously for the join VY or V ,cya.

Further, X is linearly (or totally) ordered if for any x, y € X, either x < y or
y < x; in such a case X is a chain.

122 Lemma o - *

Let X be a partially ordered set. If for some a, 8,y € X, (a A B) Ay and
a A (B A v) exist, then they are equal.

Proof. The proof of this lemma issleft as an exercise.

For functions on partially ordered sets, we have the following concepts.

1.2.3 Definition

Let X and X’ be partially ordered sets. A function ¢ : X — X' preserves order
(or is order preserving) if for any a, B € X, a < B implies ap < Bo; @ inverts
order (or is order inverting) if for any a, 8 € X, a < B implies Bp < ap. A
bijection ¢ of X onto X’ is an order isomorphism if both ¢ and ¢! preserve
order; in the case that X = X', ¢ is an order automorphism of X. A bijection ¢
of X onto X’ is an order antiisomorphism if both ¢ and ¢! invert the order.

The following subsets of a partially ordered set are of particular interest.
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1.24 Definition

. Let X be a partially ordered set. A nonempty subset Y of X is an (order) ideal
of Xifforanya€ Y, B € X, B < aimplies 8 € Y. For any a € X, the set

[a] = {B e X|B < a}
is the principal (order) ideal of X generated by a. If Y is an ideal of X such that
for every a € X, Y N [a] is a principal ideal, then Y is a p-ideal. An ideal Y of

X is essential if for any a € X, there exists 8 € Y such that 8 < a. For any
a, B € X, a< B, the set

[a,8] = {y € X|la < v < B)

is an interval of X. If a, B € X are such that a < 8 and a <y < 8 for no
y € Y, then B covers a, or a is covered by B, which we denote by a < 8. We
denote by X' the partially ordered set obtained from X by adjoining to it an
element which plays the role of the greatest element of X™.

We now turn to lattices.
L2.S Definition
Let L be a lattice. Then L is distributive if

an(BVry)=(arB)V(ary) (a,Byel);

we may equivalently interchange the signs A and V. A weaker condition is: L
is modular if

a<y=aV(BArYy)=(avB)Ay (a,B,YEL).

The lattice L is complete if every nonempty subset of L has a meet and a join.
A sublattice V of L which is complete under the order induced on it by the
order of X and whose meets and joins coincide with those of X is a complete
sublattice of L. A subset V of L is a complete A -sublattice of L if V is a
complete lattice whose meets coincide with those in L. A complete V -sublattice
has an analogous meaning.

There is a simple criterion for completeness which is often useful.
1.2.6 iemma

“Let X be a partially ordered set. If X has a greatest element and each
nonempty subset of X has a meet, then X is a complete lattice.
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Proof. Let Y be a nonempty subset of X. The set Z of all upper bounds of
Y is nonempty since the greatest element of X is an element of Z. By
hypothesis, a = A Z exists, and thus « = VY, that is, Y has a join.

For mappings on a lattice, we have the following concepts.

1.2.7 Definition

Let L and L’ be lattices. A mapping ¢ : L — L’ is a homomorphism if
(aAB)p=capABp, (aVvBlp=apVBp (a,BEL);

in such a case, we say that @ preserves meets and joins, and this definition can
be extended to arbitrary meets and joins in an obvious way. If ¢ is also a
bijection of L onto L, it is an isomorphism of L onto L’. If L and L’ are
complete lattices and ¢ : L — L’ preserves arbitrary meets (respectively joins),
then @ is a complete A-homomorphism (respectively complete V -homomor-
phism); the conjunction of the two conditions makes a complete homomor-
phism.
An equivalence p on L is a congruence on L if

apB = (a Ay)p(BAY), (aVY)p(BVY) (a,B.vy€EL).

Note that the correspondence of congruences and homomofphisms in
lattices is the same as in any universal algebra. The following lemma will be
useful.

1.2.8 Lemma

If @ is an order isomorphism of a lattice L onto a lattice L’, then g is a (lattice)
isomorphism.

Proof. Let ¢ be as in the statement of the lemma, and let a, b € L. Then .
a A b < a implies (a A b)p < ap and analogously (a A b)p < bp so that
*(a A b)g < ap A bg. Further, ap A bp < ap which yields (ap A bp)p™! <

a and symmetrically (ap A bp)e~! < b. Hence (ap A bp)p ! <a A b and

thus ap A bp < (a A b)g. Consequently, (a A b)p = ap A bp. A dual argu-
ment shows that (a V b)g = ap V be.

L4

We now discuss binary relations.

1.2.9 Definition

Let X be any set. We denote by B( X) the set of all relations on X. Then B(X)
is a complete lattice under inclusion with least element the empty relation 2
and greatest element the universal relation w on X. The equality (or identical)
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relation € is the least reflexive relation on X. Further, 3( X) is provided with a
multiplication defined by

xafy < xaz, zBy for somez € X.

The notation & and « will be used consistently; only in the case of possible
confusion, we will write ¢, and w instead of ¢ and w, respectively. Simple
verification shows that the multiplication of binary relations is associative. We

thus may write products without parentheses and define a” as the nth iterate
(4 34 SRERERIN ¢ N

1.2.10 Definition
Let p € B(X). The relation p~! defined by

xpTly e ypx (x,yE€X)

is the inverse relation of p. The relation ' = U 7_,0" is the transitive closure of
p. explicitly

xp'y < there exist z,, z,.....2, € X such that
X =2z, 2,pZ;1s i=12,...,n-1, Z,=y.
We then have the following simple result.

1.2.11 Lemma
For any p € B(X), the following statements hold.

(i) p' is the least transitive relation on X containing p.
(i) (p U p~! U g) is the least equivalence relation on X containing p.

Proof. The proof of this lemma is left as an exercise.

The intersection of equivalence relations on X is evidently an equivalence
relation. Since also w is an equivalence relation, 2.6 implies that the partially
ordered set of all equivalence relations on X is a complete N-sublattice of
B ( X). The join of a nonempty family & of equivalence relations on X is of the

form (U%)" according to 2.11. The following special case is of particular
interest.

1.2.12 Lemma

Let a and B be equivalence relations on a set X. Then of is an equivalence
relation if and only if af = Ba, in which case af = a V B in the lattice of
equivalence relations on X.
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Proof. Since a U B C af C a V B, if aB is an equivalence relation, then
aff = a Vv Band :

af = (aB) ' =p'a"! = a.

Conversely, if af = Ba, then

(aB) ™' = '™ = pa = of,
aBaf = aapp = af.

so aff is symmetric and transitive, and it is obviously reflexive, so it is an
equivalence relation.

We will need the following simple result.

1.2.13 Lemma

If L is a lattice of commuting equivalence relations on a set X, then L is
modular.

Proof. 1In view of 2.12, for any a, B € L, we have a V B = aB. Now let
a,B,v € L be such that a C y. Let a[(Ba) N y}b. Then aBfab and ayb and
thus afc, cab for some ¢ € S. Since a C y, we get cyb. But then ayb and byc
which implies ayc. Now afic and ayc yield a(B N y)c, which together with
cab gives a(B N y)ab. Consequently, (af) Ny C a(B N y). In the lattice
notation this reads (a V B) Ay <a V (B A y); since a« <y, the opposite
inclusion is true in any lattice. Therefore L is modular.

The following construction will be neede.l.

1.2.14 Definition

Let P and Q be partially ordered sets. On P X Q introduce a relation < by
(p.g)<(pq)if p=pg<q or p<p’

One verifies easily that < is a partial order in P X Q; < is the Jexicographic
order on P X Q. The partially ordered set (P X Q, <) is the ordinal product of
P and Q, to be denoted by P~ Q.

1.2.15 Exercises

(1) Let Y be a lower semilattice and / be an order p-ideal of Y. For every
a € Y, define @ by the condition [a} N I = [&@]. What can be said
about the mapping a = @ (a € Y)?

(i) Show that the lattice of all normal subgroups of any group is modular.

Give an example of a group in which the lattice of all subgroups is not
modular.



