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Preface

Our purpose in writing this book has been not to
present new results but to encourage the adoption of
simple matrix methods in the teaching of optics at
the undergraduate and technical college level. Many
‘of these methods have been known for some time but
have not found general acceptance; we believe that
the time has now come for lecturers to reconsider their
value. We believe this partly because the use of mat-
rices is now being taught quite widely in schools, and
many students will already have glimpsed something of
the economy and elegance with which, for a linear sys-
tem, a whole wealth of input-output relations can be ”
expressed by a single matrix.

A second reason is that, for more than a decade, the
field of optics has been enriched enormously by con-
tributions from other disciplines such as microwave
physics and electrical engineering. ‘Although an engin-
eering student may be a newcomer to optics, he may
well have encountered matrix methods dQuring his lec-
tures on electrical filters or transmission lines; we
think -he will welcome an optics course which, instead
of barricading itself behind its own time~honoured
concepts, links itself recognizably to other dis-
ciplines.

Another barrier which we believe matrix methods may-
help to blur is the classical separation of optics
into compartments labelled 'geometrical' and 'physical’.
The optics of today transcends all boundaries, and the
student may share our delight when a ray-tranpsfer
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matrix, based on purely geometrical considerations,
predicts with almost perfect accuracy the diffraction
behaviour of a Gaussian beam as it is generated in a
‘laser resonator or propagated through an external sys-
tem. Surely the spirit of Gauss particularly must
rejoice at this versatility!

Hoping as we do that matrix methods may help to forge
- 1inks between the various branches of optics and other -
$ubjects, we have sought to avoid any inconsistencies
of nomenclature. Out of the several types of ray-
transfer matrix that have been proposed, we have fol-
lowed Sinclair (of The Institute of Optics, Rochester,
N.Y.) in choosing a form which is’ always unimodular,
and which is compatible with the (ynv) method of cal-
culation and with modern work on laser resonators. In
contrast with Halbach's nomenclature, these matrices
are defined so that they tell us what output we shall
obtain for a given input; this is the choice favoured -
by most workers, and it ensures consistency with the
rest of the book in which we describe the established
Jones and Mueller calculus for polarization problems.
The student will, of course, encounter situations, for
example in laser beam propagation, where he has to work
backwards and find what input is needed to produce a
given desired output. In nearly all such cases, how-
ever, he will be dealing with 2 x 2 unimodular matrices,
inversion of which he will learn to tackle with relish.

We shall now discuss some of the limitations and
omissions in what we have written, and then describe
briefly the arrangement of the chapters.

Because this is an introductory text which assumes
very little prior knowledge, we have confined our
attention to just two topics - namely paraxial imaging
and polarization. The first topic has the advantage
that the concepts required initially are almost in-
tuitive; the second serves to emphasize the transverse
nature of light waves but does not demand a knowledge
of electromagnetic theory. We should have liked to in-
clude a chapter on reflection and transmission of light
by thin films and stratified media, but to do this
properly we should have had to proceed via a derivation
from Maxwell's equations of the coupled behaviour of
the transverse electric and magnetic field components.
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It would have been possible to give a more superficial
treatment, in which the illumination is restricted to
be at normal incidence and a coefficient of reflection
is assumed for each individual surface, but we feel it
is better to omit the subject altogether and refer the
student who is interested to existing coverage in the
literature. Other topics which we rejected, but which
might have been suitable for a more advanced book, are
Wolf's coherency matrix and the use of 3x3 or 4 x4
matrices to describe reflection from a series of
variously oriented mirror surfaces, for example in a
reflecting prism.

Our first chapter is intended for those who have no
previous acquaintance with matrix algebra. Using num-
erous worked examples, it introduces the basic ideas .
of rectangular matrix arrays and gives the rules for '
~adding them and for forming matrix products. The
section on square matrices concentrates for simplicity
on the 2 x 2 matrix. After the transpose matrix and
the determinant have been introduced, the. problem of
matrix inversion is discussed. This leads into a brief _
treatment of d.tagonalization, and we conclude by showing
how . the Nth powex of a matrix can be detemined (without
memorizing Sylvester's theorem).

Chapter II is.devoted to the paraxial imging prop—
erties of a centred optical system. Defining a,ray in
terms of its height and its optical direction-cosine,
we show how a ray-transfer matrix can be used to des-
cribe the change that occurs in these two quantities.
as the ray traverses a system. The two basic types of
matrix that represent the effect of a simple gap or
of a single refracting surface are combined to form
the equivalent matrix of a thin lens, a thick lens or
a complete optical system. It is shown how the prop-
erties of a system can be inferred from knowledge of
its matrix, and conversely how:the matrix elements can
he determined experimentally. At the end of the chap-
.2r weq extend the ray-transfer matrix to’ inc.lude re~ -

“lecting as well as refracting elements. ‘The text is
again supported by worked: examples, and an appendix

shows how the aperture properties of a system can- be
letermined.

In: the first part of chapter III we rcview and tabul—
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ate the results so far obtained and use them to des-
cribe the radius of curvature of a wavefront, the
optical length of a ray path and the étendue of a beam.
We then consider optical resonators and show how a

" round trip between the mirrors of a resonator can be
represented by a single equivalent matrix. In order
to consider the effect of repeated traversal of the

* resonator, we now diagonalize its matrix and find that,
for the so-called 'unstable' case, both the éeigen-
values and the eigenvectors are real; the former rep-
resent the loss per transit due to 'beam walk-off' and
the latter represent solutions for the radius of curv-
ature of a self-perpetuating wavefront.

- For the case of a 'stable' laser resonator, both
eigenvalues and eigenvectors are complex; the former .
‘represent the phase shift per transit and the latter’
can be interpreted in terms of Kogelnik's complex
curvature parameter to predict not only the divergence
but also the spot width of the Gaussian beam that the
laser will generate. Furthermore, if we have a mode-
matching problem in which we must calculate the diffrac-
tion of a laser beam as it is propagated externally,
this too can be solved very easily by using the ray-
transfer matrix. We conclude by indicating the exten-

" sion of these methods to distributed lens-like media.
The use of an augmented matrix to handle residual mis-.
alignments is discussed in an appendix.

In chapter IV we consider two alternative matrix
methods for handling problems in polarization. After
reviewing the different kinds of polarized light, we
introduce first the Stokes parameters and the 4 x4
‘Mueller matrices by which problems involving both pol-
arized and unpolarized light can be tackled. ' The
discussion includes numerous worked examples and an
account of how both the Stokes parameters and the
elements of a Mueller‘matrix can be determined experi-
mentally. The Mueller matrices that are likely to be
needed are tabulated and their derivation is given in
an -appendix.

A similar discussion is then given for the Jones
calculus, which uses 2 x2 complex matrices and is more
suitable for dealing with fully polarized light.. The
material is so arranged that the student can, if he
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wishes, concentrate exclusively either on the Jones or
on the Mueller method.

Other appendixes to this chapter contain a statistical
treatment of the Stokes parameters and a full analysis
of the connection between the elements of a Jones
matrix and those of the corresponding Mueller matrix.

Chapter V is concerned with the application of matrix
methods to the propagation of light in uniaxial crystals.
Although it is more advanced and demands some knowledge
of electromaghetic theory, it does not depend on the
contents of chapter IV and can be read separately. We
hope that the student who reads it will go on to some
of the topics that we have omitted. A bibliography is
provided.. ‘ .

Finally, since the chapters of this book have been
designed primarily as educational stepping-stones and
as illustrations of the matrix approach, only a limited
range of optics has been covered. How far is a student
likely to find this material of value during his sub-
sequent career?

For the small fraction of graduates who will spend
their life in optical design or manufacture, it has to
be admitted that problems involving polarization do not
often arise, and in most cases the contribution .of
first-order optics is trivial; the real problems arise
either in using a computer to control third-order and
higher-order aberrations or in more practical aspects
of fabrication and assembly.

But for every professional optician there will be
many others whose practice it will be to buy their
optical equipment off the shelf and then incorporate
it into larger systems.  Some of these workers will be
found in scientific research and others. in new indus-
tries based on optoelectronics and laser engineering,
but many will be engaged in more traditional fields
such as mechanical engineering. We refer here not
only to photoelasticity and to established techniques
for optical inspection and alignment but also to more
recent developments in laser holography and speckle
interferometry. The era has already arrived where
optical methods of measurement can be applied to a wide
variety of unconventional tasks, and the engineer con-
cerned usually has to work on a 'do it yourself' basiss
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In holographic non-destructive testing, in the study of
vibrations 6r in strain analysis, the com@onent being
viewed mdy be so irregular in shape that there is no
point in ferying to achieve well-corrected imaging over
a wide flat field. - It follows that money (as well as
internal yeflections) can often be saved by using the
‘simplest pf; lenses; but before those cheap lenses are
thrown ether, with or without the help of a ray-
transfer matrix, we hope that the reader of this ‘bogk
will at least remember to test each of them in a
strain-vipwer!

One of jus, J. M. Burch, wishes to acknowledge the
support of the Science and Technology Poundation of’
New York State which enabled him to spend a year as
wvisiting professor at The Institute of Optics, Univ-
ersity of Rochester. He is grateful to several of
his Rochester colleagues, and notably to Douglas C.
Sinclair, for discussions on some aspects of ray-
transfer matrices.
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Introduction to
Matrix Calculations

I.1 INTRODUCI‘ORY DISCUSSION

In this book we consider how some simple ideas of
matrix algebra can be.applied with advantage to prob-
lems involving optical imaging and polarization. The
discussion in this chapter is designed mainly for those
. readers who have not so far encountered matrices or
‘determinants; the treatment is elementary and covers
only what will be needed to understand the rest of the
book.. .

Matrices were introduced in 1857 by the _mat:hematician
.Cayley as a convenient shorthand notation for writing
down a whole array of linear simultaneous equations.
The rules for operating with matrix arrays are slightly
different from those for ordinary numbers, but they
- were soon discovered and developed. Matrix methods be-.
came of great interest to the physicist in the 1920's
.when Heisenberg introduced the matrix form of quantum
mechanics. They are used in many kinds of engineering
calculation but their application to optics is more
recent. o

Determinanvs, with which we shall be concerned to a
lesse: extent, were introduced by Vandermonde as early
as 1771. They were at first called 'eliminants‘’ because
they arose in solving equations by the method of suc-
cessive elimination. In most of the optical problems
with which we shall deal the determinants all have a
value of unity, and this fact provides a convenient
check at the end of a calculation.

Let us now consider how the notion of a matrix
arises. Suppose we have a pair of linear equations



U =Ax + By
V =Cx + Dy

where A, B, C and D are known constants, and x and y
are variables. These equations enable us to calculate
U and V if x and y are known. It proves convenient, for
many purposes, to separate the constants from the vari-
ables. We write the pair of equations thus:

U A Bl i=x

|4 C Di \y
a single equation which is defined as meaning exactly
the same as the pair. We regard each of the groups of
symbols enclosed between a pair of vertical brackets
U x
as a single entity, called a MATRIX. and are
W
called 'column matrices' or, alternatively, 'column
. vectors', since each contains only a single column.
The general matrix is a rectangular array with the
‘ : A B
symbols arranged in rows and columns. The matrix .
. ¢ D
which has two rows and columns, is called a ’square
matrix of order two'. Later we shall meet 'row matrices’
(sometimes called ‘row vectors') like [P Q], in which
the separate symbols, called 'matrix elements', are
written horizontally in a single row. A matrix with
only one element is just an ordinary number, or scalar
quantity.
If we use a single symbol for each matrix, wé can
write the pair of equations even more briefly, thus:

Ca = SCy £
where C; denotes the column matrix , C2 denotes_the
- (U ¥l ‘tA B
column matrix and S denotes the sQuare matrix .
v ¢ D

Now let us suppose that U and V are linked in turn
with another pair of variables, L and M, say, by another
pair of linear equations, thus: '

L =PU +QV
M=RU + TV



which we write in the form

L P Q] |U
M R TV

that is
Cas = KC2
L r @ .
where (3 denotes | and K denotes . We can, of
M R T

course, find L and ¥ in terms of x and y by substitut-
ing for U and V in the equations defining I and M.
Thus:

L = P(Az + By) + Q(Cx + Dy)

M = R(Ax + By) + T(Cz + Dy)
that is

L= (PA+¢qCx + (PB + QD)y

M= (RA + TC)x + (RB + TD)y

which we write as

L PA + QC PB + @D} ] =
M ‘RA + TC RB +TD| |y
that is '

Cs = FCy
PA + QC PB + @D
where F denotes v . But, on the
RA + TC RB + TD
other hand, we can write

Cis = KC2 = K(5C1)

Now, if this were an equation in ordinary algebra, we
could rewrite it as

C3s = KSC, = (KS)Cy

. merely changing the positions of the brackets. XS
would be called the product of K and S. _

Again, comparing the equations linking C; and (3, we
could write

03 = KSC] and 03 = FCl



4

- Therefore
F = XS ,
and we would say that F was the product of K and S.
In matrices we wish to follow a similar method but
we now need to define the product of two matrices,

since only products of single numbers are defined in
ordinary algebra.

I.2 MATRIX MULTIPLICATION

We define matrix multiplication so that the above
formalism can be carried over from ordinary algebra to
matrix algebra. Thus, we define the product of the
" matrices by stating that X multiplied by S gives the
product matrix F; that is

P Qi|A B} PA + QC PB + QD

R TjlC D RA + TC RB + TD

‘Examining the structure of the right-hand matrix (the
product) , it is easy to see how it is formed.

The top left-hand element is in the first row and
the first column. It is produced by taking the first
row of K, which is [P @], and the first colwmn of S,

‘ A

which is . multiplying corresponding elements

c
together (the first element of the row by the first
element of the column, the second element of the row
by the second element of the column), forming the
products PA and QC, and then adding to get PA + QC.

The element in the first row and the second column of
F is formed in the same way from the first row of X and
the second column of S. The element in the second row
and first column of F is formed from the second row of
K and the first column of S. Finally, the element in
the second row and second column of - F is formed from
the second row of K and the second column of S.

It proves useful, in some applications, to use a
suffix notation for the elements of the matrices. we
write a column matrix 4, for instance, as

. [a,
4=
s



the subscript indicating the.position of the element
in the column. A square matrix S we write as '

' S11 Si2

S = '
LS21 S22
where t.he first subscript Mcmt vhich row an
element is in and the second lmm indicates which

column. If we re-express our two square matrices K
and S in this suffix notation

Kyv1 K2 S11 Si12
K = and S = i

Kay  Kaz, S21 S22

then the product F = KS beccnies: - A

(P11 Fu] K11511 + K12521 . Ki1512 + K12522
|F21  Fa2 K21511 + K2252 K21512 + K22822
that is i

F , s 2

Exxis‘bx Zxxisu

i=1 i=1

2 2 %
szisix D‘zisiz
L1'=l =] §

This suggests a general formuia for any element of
the matrix-

RT ﬁlf‘& i

where Fpe denotes the elaent in the Rth row and the
Tth col\an of F, and similarly foxr X and S. (The
gxmadoa sign used here indicates that the repeated
suffix ¥ takes on all possible values in succession,
it is sometimes omittad.)

So far, we have confined our attention to two-by-twoe
matrices and two-by-one columns; but the matrix idea
is much more general than this. ' In this book we shall
need two-by-two, three-by-three and four-by-four
square matrices, two-by-ane, three-by-one and four-
by-one columns, and one-by-two, one-by-three and one-



