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PREFACE

In 1956 the McGraw-Hill Book company published the text “Pulse and Digital
Circuits” coauthored by J. Millman and H. Taub. That book, which undertook
to present a rather complete account of the state of the art of digital electronics
dealt almost exclusively with vacuum-tube circuits. Semiconductor devices and
circuits, which had not long before been introduced, appeared in a single final
chapter, added at the last moment, while the book was in production. In the
decade that followed semiconductor devices completely supplanted tubes in digital
circuitry. In response to this development the same authors prepared a replace-
ment volume *Pulse Digital and Switching Waveforms” which appeared in 1965.
In the newer volume the overwhelming importance of the semiconductor was
appropriately emphasized and vacuum-tube circuits were presented only incident-
ally. Now, again after about a decade, the advances in integrated circuitry have
prompted this present volume. However, this book is intended as a continuation
of the 1965 work rather than as a replacement. Here the present authors have
undertaken to describe and analyze all the basic integrated-circuit building blocks
from which digital circuits and systems are assembled. As reasonably as is
feasible in a textbook, the material presented is up to date. As was the case in
the earlier volume, the present authors have taken great pain with the style of
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pedagogy. We have striven to make the explanations clear and easily understood
without sacrificing depth and completeness of presentation. For this reason,
we hope that this work will find a place not only in the classroom but also
in a program of self-study for a reader who may want to keep informed about
current developments.

The material in the text has been used at the City College of New York in
a two-semester course offered to junior and senior electrical engineering students
and has been used as well as the basis of two graduate courses. This material
has also been presented in a two-semester course offered to technical staff members
of the Bell Laboratories, to engineering personnel at NASA and at Lockheed,
and in short courses offered in the continuing-education program at the George
Washington University.

It is assumed that the reader already has a background in semiconductor
devices and circuits. Nevertheless we find it useful to provide in Chapter 1 a
review of certain special matters pertaining to the operation of semiconductor
devices in a switching mode. Semiconductors have rather involved and highly
nonlinear volt-ampere characteristics. An exact analysis of semiconductor
circuits results in considerable mathematical complexity. In Chapter 1 we present
some convenient simplifications which lead to quite good and useful approxima-
tions.

The first part of Chapter 2 discusses operational amplifiers. Such ampli-
fiers, intended to be operated linearly rather than in a switching mode, are not
our proper concern. Still, in a number of cases we find that operational ampli-
fiers appear as components in what are otherwise digital circuits. F urthermore,
by a rather natural extension, operational amplifiers lead to the discussion, in
the second part of the chapter, of comparators which are indeed important
switching devices.

Chapter 3 introduces the concept of logical variables, Boolean algebra, and
methods of analyzing circuits composed of logical gates. Karnaugh maps and
their various applications are presented. This chapter is complete in the sense
that it presumes no prior acquaintance with the subject and explains all the
principles of design and analysis of logical circuits required for an understanding
of the entire text. On the other hand, the content of this chapter is inevitably
included in a course in logic design and, hence, may be bypassed by readers
who have already been exposed to this material.

The electronics of logical gates is begun in Chapter 4. The first part of
this chapter deals with resistor-transistor logic (RTL) while the second part is
concerned with integrated-injection logic (IIL). RTL is not presently used in new
design. Yet there are a number of reasons on account of which it is valuable
to consider this family of logic. Being the first widely used family of IC logic
available, there are in operation many installations in which it is incorporated.
Then, again on account of its elegant simplicity, it is an ideal vehicle through
which to present many of the basic concepts and principles universally important
in the electronics of logical gates. Finally, it bears an interesting topological
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relationship to IIL which is one of the most recently developed families of logic.
Chapter 5 considers diode-transistor logic (DTL). In the family of DTL we
find high-threshold logic (HTL), which finds extensive application in highly noisy
environments.

Chapters 6 and 7 discuss transistor-transistor logic (TTL) and emitter-
coupled logic (ECL) respectively. At the present time these are the most widely
used saturating and nonsaturating logic families. Hence the analysis of these
families is rather extensive. In ECL particularly, it turns out that some apprecia-
tion of the nature of signal transmission over transmission lines is required.
Readers who are unfamiliar with transmission line propagation will find an
adequate introductory presentation in Appendix A. A more complete discussion
appears in Chapter 3 of “Pulse Digital and Switching Waveforms” referred to
above. Metal-oxide semiconductor (MOS) logic and complementary-symmetry
(CMOS) logic is presented in Chapter 8.

The various families of logic having been considered (Chapters 4 through 8),
we begin in Chapter 9 to consider the basic digital structures which are assembled
from these gates. Chapter 9 explores in considerable detail the principles of
operation of various types of flip-flops and, in addition, analyzes the electronics
of the circuitry of a number of representative commercial units. We take con-
siderable pains to make clear how flip-flops are adapted to circumvent timing
problems that would otherwise develop in synchronous systems. Registers and
counters are discussed in Chapter 10. Procedures for the design of both
synchronous and ripple counters of arbitrary modulo are explained, and the use
of registers to generate pseudorandom and other specified sequences is also
presented.

Logic circuits for performing arithmetic operations are considered in
Chapter 11. Emphasis is placed on the operations of addition (and subtraction)
since generally multiplication and division are performed by algorithms involving
the operation of addition (or subtraction). We have taken rather more care
than is usual to explain clearly how negative numbers are expressed and how
subtraction is effected in one’s-complement and two’s-complement notation
through the use of logic circuitry which actually performs addition. The use
of saturation logic for overflow correction in addition is presented as is the
operation of the arithmetic logic unit which is the heart of every microprocessor.
Semiconductor memories are examined in Chapter 12. We have omitted core
memories since it appears that such core memories are in the process of being
supplanted by semiconductor systems. This chapter includes sequential
memories, read-only memories and random-access dynamic and static memories.
The electronics of memories involving field-effect transistors, the CCD and
bipolar junction transistors are also described.

In Chapters 13 and 14 we consider the matter of the interface between
digital and analog signals. Chapter 13 presents analog gates, analog multiplexers,
sample-and-hold circuits, integrate-and-dump circuits, etc. Chapter 14 examines
digital-to-analog and analog-to-digital systems. The various analog-to-digital
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systems considered are reasonably representative of the systems which are in
wide use. Finally, in Chapter 15, timing circuits—the integrated-circuit equiv-
alents of monostable and astable multivibrators—are discussed.

The circuits presented in this text are typical of those encountered in the
field. More than 400 homework problems are provided, ranging from routine
exercises to rather sophisticated design problems. A solutions manual is available
which instructors can obtain from the publisher. An answer book is also avail-
able. The authors will be happy to furnish a set of laboratory experiments
currently used at CCNY in conjunction with this text.

We acknowledge gratefully the encouragement given by our colleagues and
students. In particular we thank Mr. T. Apelewicz who prepared the solutions
manual, Dr. J. Garodnick to whom we are indebted for a critical review and
criticism of much of the text material and Mr. Edward Tynan and Dr. Ronald
Schilling through whose kindness we were able to receive a great deal of the very
useful technical literature published by the Motorola company. We express our
particular appreciation to Mrs. Joy Rubin for her skillful service in typing the
manuscript.

HERBERT TAUB
DONALD SCHILLING
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1

ELECTRONIC DEVICES

As with analog circuits, the electronic devices used in digital processing circuits
include the diode, the bipolar transistor, and the field-effect transistor. We
assume that the reader is familiar with these devices but principally in applications
involving analog circuitry, where they are used as linear elements. In digital
circuits, these devices are used principally in a nonlinear manner, ie., in a switching
mode, where they are abruptly driven between the extremes of nonconduction
and conduction. In this chapter we shall review some matters of interest in
connection with these devices with special emphasis on their behavior when
used as switches.

1.1 THE IDEAL SEMICONDUCTOR DIODE

For an ideal pn junction diode the current I is related to the voltage V by
the equation

I= Iy - 1) (1.1-1)

As indicated in Fig. 1.1-1a, the current I is positive when the current flows
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FIGURE 1.1-1

(a) The symbols I and Vused in the diode equation (1.1-1), defined. (b) The volt-
ampere characteristic of an ideal diode.

from the p side to the n side of the diode. The voltage V is the voltage
drop from the p side to the n side. When V is positive, the diode is forward-
biased. The symbol V; stands for the electronvolt equivalent of the temperature
and is given by

Vp=— _ (1.1-2)

where k = Boltzmann constant = 1.38 x 10™23 J/K
e = electronic charge = 1.602 x 10~ 1° C
T = absolute temperature, kelvins

Substituting, we find that VT_ T/11600 V and that at room temperature
(T = 300 K) VT~25mV

The form, in principle, of the diode volt-ampere characterlstlc is shown
in Fig. 1.1-1b. When the voltage v ois positive and several times V;, the
exponential term in Eq. (1.1-1) greatly exceeds unity and the —1 term in
the parentheses may be neglected. Consequently, except for a small range in the
neighborhood of the origin, the current increases exponentially with voltage.
When the diode is reversed-biased and |V| is several times larger than Vj,
[I|~ I,. The reverse current is therefore constant, independently of the applied
reverse bias. Accordingly, I, is referred to as the reverse saturation current.
This current is shown in Fig. 1.1-1b using a greatly enlarged scale since the value
of I, is orders of magnitude less than typical values of I.

As noted, we shall be interested in the operation of diodes (and other
elements) as switches. The diode is an open switch when back-biased and a
closed switch when forward-biased. We shall generally find, in circuits of interest
to us, that when a diode is called upon to make its presence felt in a circuit
as a closed switch, it may typically carry a current of the order of a milliampere,
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ie, in the range 0.1 to 10 mA. How large a voltage must be impressed across
the diode to produce this nominal forward current depends, of course, on the
diode cross section. If a diode yielded a forward current of 1 uA at an applied
voltage V, a second diode of cross section 1,000 times larger would yield a current
of 1 mA.

When a diode is manufactured, whether as a discrete component or an
element in an integrated circuit, it is economical to use a cross section no larger
than necessary. Such is particularly the case in integrated circuits (IC). For
here, since many circuit elements are included on a single chip, a small increase
in the cross section of one element is multiplied many-fold. This may result in
an appreciable increase in the size of the silicon chip, or, equivalently, the same
size chip will contain fewer diodes. The cross section of a diode will then be
selected in part on the basis that with a reasonable margin of safety the diode
should be able to dissipate the heat generated within it without an unacceptable
increase in temperature. Additionally, the cross-sectional area must be large
enough to reduce the ohmic resistance of the diode to an acceptable value.

A diode model When we examine the volt-ampere characteristics of commercial
silicon diodes intended for application in low-power electronic circuits, we find
that currents of the order of a milliampere correspond to a forward voltage of
about 0.75 V. Diodes incorporated into integrated circuits appear to have
comparable characteristics, again requiring about 0.75 V for forward currents in
the range of a milliampere. Since we shall frequently have occasion to refer
to this voltage, we assign to it a symbol V, = 0.75 V. When, then, the forward
diode voltage is V,, the diode, used as a switch, is in the closed position.

If the diode switch is to be in the open position, it is really not necessary,
as a matter of practicality, that the diode be reverse-biased. It is only necessary
that the voltage across the diode correspond to a forward current which is
negligibly small in comparison with the current corresponding to ¥,. Let us
consider that the diode current is negligible when it has been reduced to 1 percent
of the current corresponding to V,. The diode voltage, corresponding to this
reduced current, we call V,.

If currents I, and I, correspond to voltages V, and V,, then from Eq. (1.1-1),
we have

I, = Ip(e%/% — 1) (1.1-3a)
and I =1Io(e%" — 1) (1.1-3b)

Since ¢'/'r and €"/'r are each much greater than unity, we have

I

%= 100 = Ve -¥IWr (1.1-4)
I')’
Hence V,~V,=VrIn 100 =~ 120 mV (1.1-5)

Thus, since V, ~ 0.75 V, V,~063V.



