

Software Reliability

H. Kopetz

Technical University of Berlin

7

| p/:\j\y ‘g_ y 4 iy

© Carl Hanser Verlag Miinchen Wien 1976

Authorised English language edition, with revisions, of
Software-Zuverldssigkeit , first published 1976 by Carl Hanser Verlag,
Munich and Vienna .

© English language edition, The Macmillan Press Ltd 1979

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1979 in the United Kingdom by
THE MACMILLAN PRESS LTD

London and Basingstoke

Associated companies in Delhi Dublin

Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Typeset in 10/12 Press Roman by
Styleset Limited - Salisbury - Wiltshire
" and printed in Great Britain by

Unwin Brothers Limited

The Gresham Press
Old Woking, Surrey

British Library Cataloguing in Publication Data

Kopetz, H
Software reliability. — (Macmillan computer
science series).
1. Computer programs — Reliability -~
1. Title i o
001.6425 QAT76.6 '

ISBN 0-333-23372«7
ISBN 0—333-23373-5 Pbk

This book is sold subject to the standard conditions of the Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition, inciuding
this condition, being imposed on the subsequent.purchaser.

rur

1a

Preface

This book is intended for the student of computing and the practising computer
professional who is concerned about the unreliability of computer systems. It is the
author’s aim to bring an understanding of the concept of software reliability and
to impart some ideas, which should lead to the development of more reliable soft-
ware systems. The book tries to bridge the gap between theory and practice and
will thus be valuable supplemental reading for a course on software engineering.
During my work on real-time systems in industry I have seen many occasions
where the subjects of testing, error detection and error handling have been

- tackled in an unsystematic, ad hoc fashion which leads to subsequent problems

in the integration phase. The chapters on these subjects formed the starting
point of this book and other chapters were developed in order to produce a clear
and concise text covering the. whole subject of software reliability, while always
keeping the practical aspect in mind.

This English edition is a revised version of the original German edition. The
author would like to thank all his friends and colleagues for their help, suggestions
and' remarks on the German text. Many of the comments which have been
raised have been considered in this revised English version. '

Particular thanks go to Mr Williams, for the assistance in the translation of
the manuscript, and to the editor of Carl Hanser Verlag, Mr Spencker, and the
editor of Macmillan, Mr Stewart, for their kind co-operation. Above all,] would
like to thank my wife Renate for her constant encouragement and help.

Berlin,
January 1979 H. KOPETZ

Contents

Preface

Introduction

Basic Concepts

2.1 Reliability
2.2 Programs and Processes
2.3 Correctness, Reliability and Robustness

Errors

3.1 The Notion of an Error
3.2 (lassification of Errors
3.3 Description of Some Special Error and Failure Types

Software Structure

4.1 Intermodule Coupling

42 Intramodule Coupling

4,3 Structure and Efficiency
4.4 The Description of a System

Functional Specification

5.1 Content
5.2 Changes and Modifications
5.3 Specification Aids

Reliability and System Design

6.1 Sequential Processes
6.2 Parallel Processes
6.3 ° Programming Style .

vii

O N W W

13
14
18

25

26
28
29
31

33

33
36
36

39
39

49

vi

10

11

12

Contents

Verification of Software

7.1 Test Methods

7.2 Test Strategies

7.3 The Test Plan:

7.4 Analytical Program Proving
Manual Debugging

8.1 Manual Error Diagnosis
8.2 Debugging Aids

Automatic Error Detection

9.1 Analysis of Error-Detection Méchanisms
9.2 Methods of Error Detection

9.3 Error-detecting: Interfaces

Automatic Error Correction

10.1 Automatic Error Diagnosis

10.2 Reconfiguration

10.3 Restart

Software Maintenance

11.1 The Reason for Software Maintenance

11.2 Factors which Influence the Maintainability of Software

11.3 Software Maintenance and Complexity
The Management of Reliable Software

12.1 The Difficulties of Software Management
12.2° Planning

12.3 Control

References and Selected Bibliography

Index

| Introduction

‘As long as there were no machines, Programming was no problem at all; when we
had a few weak computers, Programming became a mild problem, and now we have’
gigantic computers, Programming has become an equally gigantic problem.’

E. W. Dijkstra (1972b) p. 861

With the first generation of computers the problems in programming were blamed
on the severe constraints imposed by the hardware of that time. Since then there
have been tremendous technological advances in the field of computer hardware.
But although the hardware has become much more flexible, the problems with
programming have not decreased; on the contrary, they are worse now than they
ever were before. The physical constraints of the hardware have been replaced
by the invisible constraints of the capacity of the human mind. The neglect of
these psychological limits, together with a disquieting optimism, has led to the
design of large software systems. It is not until these very complex logical systems
are realised that the incompleteness and inconsistencies of the human intellect
show up and result in a number of errors.-Each one of these errors can.be con-
sidered as a single logical flaw without any relation to the whole. Experience
shows, however, that all these errors, if seen as a whole, describe a general
phenomenon commonly referred to as the ‘software crisis’. The complexity of
many software systems has become unmanageable and the natural consequences
are delays and unreliability.

There are considerable economic implications connected with the unrelia-
bility of software. Between one-third and one-half of the effort that goes into
the development and maintenance of a software system is spent on testing and
debugging. Since during the implementation of a large computer system, more
resources are allocated to the software than to the hardware, the direct costs
of the software unreliability themselves amount to a substantial fraction of all
computer costs. If, in addition, the indirect costs of errors (for example, lost
benefits of a system) are considered, then the economic s1gmﬁcance of software
reliability becomes even more pronounced.

There are a number of methods by whith more rehable software systems
can be produced.

(l) By a design methodology which leads to a highly reliable product. If we-
were successful in finding such a design methodology we could completely
‘elimihate — in theory at least — all activities which are connected with

(2)

(3

Software Reliability

testing, debugging and run-time error treatment. This alternative, the
constructive approach to software reliability, precedes all other miethods
and must be considered the most effective approach to software reliability.
In the past few years, a considerable amount of effort has been spent in
the development of improved software design techniques. Although some
promising results have been achieved it is to be doubted that a design
methodology in itself is sufficient for the development of software systems
of the required reliability.

By testing and debugging. This method assumes that the required rehablhty
of a software product can be achieved by very thorough testing and
debugging. At the present time more effort is spent in the testing and
debugging phase than in any other phase of the software development

" process. In spite of this, the problem of the unreliability of software has

not been solved satisfactorily. This can be attributed to the fact that, even
during a very thorough test, only a small fraction of all possible input cases
of a software system can be executed.

By the inclusion of. redundancy in order to detect and correct errors which
show up during the use of a software system. This last method is distinctly

. different from the previous methods. It is assumed that a complex com-

puter system will always contain errors and steps are taken to reduce the
consequences. of such errors.

This book is based on the assumption that reliable software can be developed

most effectively by a combination of all three methods. The main emphasis is
put on software for on-line, real-time systems, since in these systems the conse-
quences of errors and failures are normally much more serious than in systems
for batch processing.

«

2 Basic Concepts

2.1 RELIABILITY

Every technical system is developed with the intention of fulfilling a particular
function. A measure of how well this function is performed is given by the
capability of the system, which does not normally give any indication of the
period for which the system runs without cause for complaint. The capability as
a function of time, depends on reliability and maintainability.

The systematic investigation of reliability starts with the realisation that
the reliability of a system may be defined as a probability.

* The reliability of a technical system is the probability that the system
performs its assigned function under specified environmental conditions for a
given period of time.

It is synonymous with the probability of survival of a system. Quantita-
tively it may be described by a reliability function, R(z}, which gives the proba-
bility that a system will function over the time interval (0, 7). It has the following
properties.

R(0) =1, the system is certain to function at the beginning
of the interval.
R(°°)=0; at time ¢ = oo the system is certain to have failed.

In the interval (0, o) the function decreases monotonicaily.
The unreliability Q(¢) of a system is defined as the probability of failure,
hence

o) +R(H) =1

Next the concept of effectiveness is introduced. A system is said to be
effective when it not only performs its allotted task, but also operates over a
long period. The effectiveness as a function of time is not only dependent on the
reliability, but also on the maintainability (figure 2.1).

The maintainability of a system is the probability that, after the appearance
of an error, the system is returned to an operational condition in a given time.
The average time taken to correct an ezror is known as the ‘Mean Time to Repair’,
abbreviated to MTTR. This interval starts at the appearance of the error and

50506166

4 Software Reliability

Effectiveness

i

Functional Maintainability Reliability
capability MTTR - MTTF

Maintenance N Spares
parsonnel Reparability availability
System b)
construction ocumentatio

Figure 2.1 Interrelationship of functional capability, mamtamabtlzty and relta-
bthty

ends when the system becomes operational again. Maintainability depends on a
number of factors; the availability and competence of maintenance personnel,
the availability of spare parts, and the ease with which the system may be repaired,
that is, reparability.

The reparability of a system is the probability that an error will be
repaired in a given time, by service personne! of average ability, assuming that
spare parts are available. While maintainability is also a function of the service
organisation, reparability is a system characteristic, that is, it depends on system
construction, documentation, and so on.

Of interest in practical applications is the Mean Time Between Failures
(MTBF). Strictly speaking, such a mean only has any relevance if the failure rate
over a long period (in comparison to the MTBF)hoes not change. In such a case
the conditional probability of failure during any given interval is constant. (The
condition is that the system is functional at the beginning of that interval).

The MTBF is made up of two terms, the Mean Time To Failure (MTTF)
and the Mean Time To Repair (MTTR) that is

MTBF = MTTF + MTTR
Since the MTTR is generally small in comparison to the MTTF, MTBF is often

in practice taken to be synonymous with the MTTF.
System availability is defined as the percentage of the time, during a given

Basic Concepts 5

interval, that the system is in ?act available, thus

___MTIF
MTTF + MTTR

A high availability can be achieved by a very small MTTR compared with a
relatively short MTTF, as well as a longer MTTR for a larger MTTF (figure 2.2).
The availability alone is thus not sufficient to characterise completely the
relationship between effectiveness and time; in many cases the actual number of
failures may be the decisive factor.

Redundancy

If a system contains more resources than are absolutely necessary for the fulfil-
ment of its task, it is said to contain redundancy. The term ‘resources’ is here
taken in its broadest sense, and in a computer system can mean hardware, soft-

ware or time (Avizienis, 1972).
As a measure of redundancy the following relationship is introduced

(Neumann et al., 1973, p. 15).

additional resources
minimum necessary + additional resources

Availability
10000 9999 9997 939 998 995 % 99
h %
5000 y.45 / 98
3000 : pd
2000 pd pd 95
Y 4 4
T 1000 ‘ 90
MTTF 500 |/ // y,
300 B)4 v 80
200 // / // /]
100 / / /4/ 50
50 A va f/ /
30 4 , / ‘ //
20 [/
4 /
10 y.
00 020305 1 2 3 5 10 20 30 50 h 100
NTTR —

Figure 2.2 Relationship between maintainability {MTTR), reliability (MTTF)
and availability ‘

6 Software Reliability

Redundancy is necessary for the detection and correction of faults. During
the design stage of a system it is possible to choose between two completely
different alternatives in order to increase the reliability of a system. High reliability
may be achieved either without redundancy by using high quality components,
or by using a greater number of average quality components redundantly.

Active redundancy is employed when the redundant components take an
active part in the normal system operation. Standby redundancy is employed
when the redundant system parts are only switched on when the active parts of
the system drop out due to a failure.

If it has been decided to increase systeni reliability by means of redundancy,

' then a choice has to be made between redundancy at component or at system level.

For the same amount of additional résources, redundancy at the system level offers
a smaller increase in reliability than at the.component level. The use of redundancy
at component level, however, places greater demands on the engineer. Protection
against error propagation in systems with redundancy at compaqnent level requires
a greater development effort than in systems with redundancy at system level.

2.2 PROGRAMS AND PROCESSES

The terminology used thus far has been developed for, and applies primarily to,
the reliability of equipment, that is, hardware. Implicit in this is the assumption
that a system that functions correctly initially will eventually fail due to the
ageing of its components.

The situation is somewhat different with software. There will be no failures
due to ageing, failure will be due to design errors. A design error in part of a
program will first lead to observable symptoms when that part of the progiam is
actually executed with appropriate input data, Thus, the relationship between
the static program text and the dynamic execution of the program is of great
importance when dealing with software reliability. The following model has been
substantially influenced by Denning (1971), Dijkstra (1972a), Goos (1973),
Horning et al. (1973), and King (1971).

A program may be thought of as an ordered set of instructions or state-
ments

(51,82,85,....8)

The instruction space of the program is made up of elements of this set.

The execution of a single statement is called an action or elementary
process. An action can be considered under two aspects, the transformational
aspect and the control aspect.

The transformational aspect deals with the transformation of information
stored in the computer mgmory. Each action can be considered as a function
operating on a number of variables

Xi3X25 o vy Xp

Basic Concepts 7

which assume input values from the domains
D, D,,....D,
and results from the ranges

Ry,Rs,...,R

n
‘The Cartesian product

D= X D;

i=1,n
is defined as the input space

R= X R;

i=1,n

as the output space and the union of the input space and output space as the
data space of the action. The variables are called input variables and output

variables of the ‘action respectively.)

The control aspect’ of an action deals with the definition of the successor
statement. There are two types of binary relations between statements. State-
ment 2 is the immediate successor of statement 1 and statement 2 takes as input,
the result of statement 1. The integer variable, which designates the successor
statement is called the program counter j where

1<j<m

In our model we distinguish between three kinds of executable statements.

(1) The execution of an assignment statement (assignment action)

xk:f(xlsx’b - . -;xn),j

causes the value of the variable x, to be changed according to the result of
the function f. The successor stafement to be executed is the immediate

sutcessor in the instruction space.
(2) . The execution of a test and branch statement (test and branch action)

P(xlax2,~ "x’l)’ jl;j2

involves the examination of a predicate P over the input variable which is
either true or false. If it is true, the successor statement is j;, otherwise

J2.

8 Software Reliability

(3) The execution of a halt statement (half action) terminates the execution
of the program.

At certain well defined instants of time the state of the sytem can be
described by a state vector

v=_ay,a,,...,ay,N}

wherea;,a,,...,a,,N define the values of the program variables X, X, ...,
X,, and the program counter respectively. The set of all possible states of the
state vector is the state space of the system. '

We call a program a program module if it contains one and only one halt
statement, if the last element of the ordered set of statements is this halt statement
and if the instruction space is not modified during the execution of the program.
It is assumed that the execution of a program module is started at the first
statement of the instruction space. In the following the terms program and
program module will be used synonymously.

The relationship between a program and its executnon can be described on
four different levels of abstraction.

(1) Given an initial state vector vo we consider the sequence of state vectors
Vo, V1, V2, .. . Vr -

generated during the execution of the module. This sequence of state
vectors is called a computation generated by this module. The control path
of a computation is defined ax the sequence of values of the .program
counter.

(2) If we abstract from the specific data transformation aspect and consider
only the sequence of actions

al9a2)a3a- .. ,ar N

performed during the execution of the module, provided there is an

initial state vector v, we get an action sequence of that module. A decision-

free program module can generate only one action sequence but many
 different computations.

(3) If we abstract from the specific data transformations and from the specific
action sequences generated during the execution of the module and con-
sider only the general data transformations under the assumption that the
execution will start at the first statement and will terminate, we get the
process which is generated by the execution of the.program module. Each
process is embedded in an environment which furnishes the inputs and uses
the results. Any variable that is an input variable to any one action of the
process is a significant variable of the process. Any variable that is an out-

Basic Concepts 9

put variable to any one action of the process is a changed variable of the
process. An input variable of the process is every variable that is a signifi-
cant variable of the process and a changed variable of the environment. An
output variable of the process is every variable that is a changed variable
of the process and a significant variable of the environment. All variables
that are used in any one action of the process and that are neither input
nor output variables of the process are internal variables of the process.

(4) If we abstract from the internal variables of the process and consider only
the input variables, the output variables and the data transformation of the
process, then the process can be considered as an elementary process or
action on a higher level.

We thus have a recursive feature in our definitions. The execution of a pro-
gram module can be considered as a computation, a sequence of actions, a
process or an action on a higher level. The primitive element in our system is a
basic data transformation. The above definitions are not necessarily restricted 1o
the software levels. They can also be used to describe hardware processes. Ther :
are many common elements between hardware and software processes and ir
some respects a distinction is not justified.

Due to the recursive nature of the above definitions, the error analysis of a
'software system with a hierarchical structure may be reduced to the investigation
of the behaviour of a single process.

2.3 CORRECTNESS, RELIABILITY AND ROBUSTNESS

It is assumed that no changes will be made to the software system, the correct-
ness and reliability of which is being analysed. Flearly, every change to a software
system creates a new system which will have different reliability properties from
the original system. ’

Software Correctness

Software correctness is concerned,with the consistency of a program and its
specification. A program is correct, if it meets its specification; otherwise it is
incorrect. When considering correctness it is not asked whether the specification
corresponds to the intentions of the user.

Software Reliability

Software reliability, on the other hand, may only be determined when the actual
utilisation of the software by the user is taken into consideration

‘Reliability is (at least) a binary relation in the product space of software and
users, possibly a ternary one in the space of software and users and time.
(Turski, 1974, p. 15))

10 Software Reliability

‘In the preceding section the relationship between a program and the pro-
cess associated with it was discussed. A process may also be thought of as the
realisation of a function that relates every point in the input space to a point in
its associated output space. If there is an error in the process this realisation will
not be achieved as intended, that is, various points in the input space will not
" produce the expected results. If a proceduze is available (a so-called ‘test oracle®),
whereby it may be determined for every point of the input spade whether the
coimputatidn starting at this point delivers a result that corresponds with the
intentions of the user or not, then we can introduce a binary error function e(i)
which is defined over the entire input space so that

‘e({) =0 the computation, that starts at point i, is correct .
e(i)=1 the computation ‘that starts at point i is either incorrect,

or does not terminate where i= 1, N ;
and N = the number of points in the mput space (MacWilliams,
1973)

For every application there is defined, over the complete input range, the distri-
bution of input values such that _ B

Ip()=1
p(i) the probability that point i occurs in the input domain for the
particular application

The probability of the appearance of a software error is then given by

An = Ze(D)p(i)
A, = probability of the appearance of a software error for an input
case (Kopetz, 1974).

The choice of a particular input case, from the set of all possible input
cases, is the desired random event. Software reliability may thus be defined as
follows.

The reliability of software is the probability that a software system fulfils
its assigned task in a given environment for a predefined number of input °
cases, assuming that the hardware and input are free of error. :

In software systems, the selection of the input completely determines the
output of a computation. Herein lies the fundamental difference from hardware
reliability. With an error caused by ageing, it is not necessary to look at a parti-
cular input, since it can be assumed that the hardware originally functioned forall
inputs, and the error lies in thie breakdown of a hardware component (Avizienis,
1972). (The problem of design errors in the hardware logically belongs to the
class of software errors.) The failure rate of software can only change when
either the error function changes, that is, changes to the software are carried

Basic Concepts ' 11

out, or the input distribution changes, that is, the program is placed in a new
environment. An example of the varying error rates due to a changing input
distribution is encountered it the commissioning of a software system. Assoon as
the test conditions change, the error rate changes py leaps and bounds (Wolverton
and Schick, 1972).

If it is assumed that the input distribution does not change, and that the
program is not modified, then the software error rate cannot change. Under
these conditions software errors may be described by a constant error rate.

, _ The relationship between the reliability defined as a function of time, and
the probability of error for each of the input cases may be written in terms of
the system input rate

Xt = Al
where A, = probability of the appearance of a software error for an
‘ isolated input case
\; = error rate as a function of time
r = number of input cases per unit time (input rate)

The same reasoning can also be applied to real-time systems. The time axis
can be subdivided into discrete intervals that are defined by the cycle time of the
computer. Timing starts from a defined initial condition of the system. Clearly
the input range must be expanded with the time dimension. This additional
dimension increases the complexity of a system significantly, as is known from
common experience.

In a number of publications (Jelinski and Moranda, 1972 ; Shooman, 1976;
Hamilton and Musa, 1978) reliability growth modeis for software have been
presented. These models not only consider the reliability of a software system
per se but look also at the change (hopefully growth) of reliability as a conse-
quence of program modifications (error elimination). In the development of
these models many assumptions about failure mechanisms, number of residual
errors, program modifications and the use of the system have to be made. It has
yet to be shown whether all of these assumptions are fully justified (for a
criticism of some of these assumptions see Littlewood, 1978).

Software Robustness

The concept of software robustness is used to investigate the relationship between
software and system reliability.

System reliability may be defined as the probablhty that the computer
system performs its allotted task during a given period of tlme under specified
environmental conditions.

The term environmental conditions is taken to mean not only the physical
environment surrounding the computer, but also the input distribution (and its
rate) and the average number of input errors.

