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Preface

This book is about the financial market models that are used by risk managers
and investment analysts. It aims to provide a rigorous explanation of the
theoretical ideas, but in practical and very clear terms. As concepts are
introduced, real-world examples are provided in the text and, interactively, on
the accompanying CD.

I have heard it said that too much academic research is focused on finding very
precise answers to irrelevant questions. This book aims to provide academi-
cally acceptable answers to the questions that are really important for
practitioners. It is written for a wide audience of practitioners, academics and
students interested in the data analysis of financial asset prices.

It aims to help practitioners cut through the vast literature on financial market
models, to focus on the most important and useful theoretical concepts. For
academics the book highlights interesting research problems that are relevant
to the day-to-day work of risk managers and investment analysts. For students,
the comprehensive and self-contained nature of the text should appeal.

The book is divided into three parts:

Part I: Volatility and Correlation Analysis covers the estimation and forecasting
of volatility and correlation for the pricing and hedging of options portfolios.

Part I1: Modelling the Market Risk of Portfolios concerns factor modelling and
the measurement of portfolio risk: the main focus is on modelling relationships
between assets and/or risk factors using linear models.

Part I1I: Statistical Models for Financial Markets focuses on the time series
analysis of financial markets.

A detailed summary of the content is provided in the introduction to each part.
At the end of the book a low-level technical appendix is included; this covers
the basic statistical theory that is necessary for the book to be self-contained.
.

Practitioners ‘and academics share many important problems, and the
communication between theory and practice is an essential part of model



e e

xviii Prefuce

development. However, it is not always easy to straddle the divide between
academic research and the practice of risk management and investment
analysis. A common language, a common terminology and, above all, a
common approach are necessary. It is hoped that this book will help to
enhance the communication between these two schools.

Carol Alexander

July 2001
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Partl

Volatility and Correlation
Analysis

Part I provides insights into the pricing and hedging of options through the
upderstanding of volatility and correlation, and the uncertainty which
surrounds these key determinants of portfolio risk. The first chapter introduces
volatility and correlation as parameters of the stochastic processes that are
used to model variations in financial asset prices. They are not observable in
the market and can only be measured in the context of a model.

Option pricing, which models asset prices in continuous time, is covered in
Chapter 2. This chapter focuses on the consequences of using the Black-

“Scholes model to price options. Although there can only be one true volatility

for the underlying price process, different volatilities are implied by the market
prices of options on the same underlying asset. If one is willing to accept these
volatilities, rather than invent better option pricing models, then their
behaviour can be described by modelling the ‘smile’ or ‘skew’ patterns that
emerge. The relationship between underlying price changes and changes in the

implied volatility of an option is analysed to support the use of different

volatility assumptions for pricing and hedging.

Statistical forecasts of volatility and correlation employ discrete time series
models on historical return data. Chapter 3 explains how to obtain moving
average estimates of volatility and correlation and outlines their advantages
and limitations. A weighted average is a method for estimation. The current
estimate of volatility or correlation is sometimes used as a forecast, but this
requires returns to be independent and identically distributed, an assumption
which is not always supported by empirical evidence. Chapter 4 introduces
generalized autoregressive conditional heteroscedasticity (GARCH) models,
which are based on more realistic assumptions about asset price dynamics.
This chapter aims to cut through a vast academic literature on the subject
to present the concepts and models that are most relevant to practitioners.
A step-by-step guide to the implementation of the GARCH models that are
commonly used by risk managers and investment analysts is followed by a

description of the application of GARCH models to option pricing and

hedging.




2 Part I: Volatility and Correlation Analysis

Most statistical models for forecasting volatility are actually models for
forecasting variance: the volatility forecast is taken as the square root of the
variance forecast. However, a forecast is an expectation, taken under some
probability measure, and the expectation of a square root is not equal to the
square root of an expectation. The last chapter in this part of the book
examines this and other key issues surrounding the use of volatility and
correlation forecasts. Quite different results can be obtained, depending on the
model used and on the market conditions so, since volatility can only be
measured in the context of a model, how does one assess the accuracy of a
volatility forecast? Rather than employ point forecasts of volatility, this part of
the book ends by advocating the use of standard errors, or other measures of
uncertainty in volatility forecasts, to improve the valuation of options.

Part I introduces some challenging concepts that will be returned to later as
further models are introduced. For example, the principal component models
of implied volatility in §6.3, the orthogonal method for generating covariance
matrices in §7.4 and the normal mixture density models of §10.3 will all
continue the exposition of ideas that are introduced in Part 1.




1

Understanding Volatility
and Correlation

This chapter introduces some of the concepts that are fundamental to the
analysis of volatility and correlation of financial assets. This is a vast subject
that has been approached from two different technical perspectives. On the one
hand, the option pricing school models the variation in asset prices in
continuous time; this perspective will be taken in Chapter 2. On the other hand,
the statistical forecasting school models volatility and correlation from the
perspective of a discrete time series analyst; this is the approach used in
Chapters 3 and 4.

The basic concepts are introduced within a unified framework that, I hope, will
be accessibie to both schools. Some of these concepts are quite complex and
their exposition has necessitated many footnotes and numerous pointers to
other parts of the book. First, volatility and correlation are described as
parameters of stochastic processes that are used to model variations in
financial asset prices. Then the differing needs of various market participants
to assess volatility and correlation are examined. The needs of the analyst will

Figure 1.1 Volatility and scale.



4 Market Models

determine whether an option pricing (implied volatility) approach or a
statistical modelling (covariance matrix) approach is required (or both).
Implied volatility and statistical volatility normally refer to the same process
volatility, but volatility estimates often turn out to be quite different and
because volatility can only be measured in the context of a model it is very
difficult to assess the accuracy of estimates and forecasts. The chapter
concludes with remarks on the decisions about the data and the models that
will need to be made when volatility and correlation forecasts are implemented.

1.1 The Statistical Nature of Volatility and Correlation

Financial asset prices are observed in the present, and will have been observed
in the past, but it is not possible to determine exactly what they will be in the
future. Financial asset prices are random variables, not deterministic
variables.! Variations of financial asset prices over a short holding period
are often assumed to be lognormal random variables. Therefore returns to
financial assets, the relative price changes, are usually measured by the
difference in log prices, which will be normally distributed.2

Volatility is a measure of the dispersion in a probability density. The two
density functions shown in Figure 1.1 have the same mean but the density
function indicated by the dotted line has greater dispersion than the density
indicated by the continuous line.? The most common measure of dispersion is
the standard deviation o of a random variable, that is, the square root of its
variance.

VA random variable, also called a *stochastic variable’ or *variate’, is a real-valued function that is defined over a
sample space with probability measure, A value x of o random variable X may be thought of as a number that is
associated with a chance outcome. Each oulcome is determined by a chance event, and so has a probability
measure. This probability measure is represented by the probubility density function of the random variable. For
any probability density function g(v), the corresponding distribution function is defined as G(x)=Prob(X<.x)
= ["_ glx)dx. Itis nol necessary to specify both density and distribution: given the density one can calculate the
distribution, and conversely since g(x)=G"(x).

2 The normal density /ummm ¢(\) is defined by two parameters, the mean y and the variance o
$(x) = ((2no” )"")up( (x —p)° ?/a%) for - 0o < x < oo. This gives the familiar %ymmunc betl-shaped curve,
which is centred on the mean pand has a dispersion that is determined by the variance o?.

A random variable is said to be Jognormally distributed when its logarithm is logonormally distributed. A
lognormal density function is not symmetrieal; it is bounded by zero on the low side but can, in theory, reach
infinitely high vulues, For this reuson it is commonly ussumed thut fnancinl ussets (bonds and shares) and
possibly commodity prices arc better represented by lognormal than by normal variates, Conversely, investors
compare financial assets on the basis of their returns; it is therefore returns that are comparable whatever the
price of the underlying usset, and it is simplest to assume that returns are normally distributed. It follows that the
price is lognormally distributed: indeed it e, = (P, — P, )/ P, | is normally distributed then 2,/P, | = | +r, and

In(?,/P, ) = r, (note that when x is small, In(] 4 x) & x). Thercfore In(P,/ Py) is normally distributed and 2,/ P,

is lognormally distributed. Note that this argument is based on investment assets and would not apply to interest
rates. The argument has also shown that the return over small time intervals is approximatled by the first
difference in the log prices,

Y41 a random variable X has density function f{x) then its mean is g = E(X) = [ xfix)dx. The mean is like the

centre of gravity of o density. It is a fundamental parameter of any density, the parameter that describes the
/m ation ol the d:.nxuy It is alao called lhe Jirst moment of the density function. The varience is
ol = 1N = Jiv—n) ANy = BN 'y — [E(X)). This parameter measures the dispersion of the density
function about the mean. It is also called the second noment about the mean of the density function.

w



- Understanding Volatility and Correlation 5
It is hard to predict price variations of financial assets so it is usual to assume
that successive returns are relatively independent of each other. This means
that uncertainty will increase as the holding period increases, the distribution

will become more dispersed and its variance will increase. Put another way, the -

variance of n-day returns will increase with n. Therefore it is not possible to
compare n-day variance with m-day variance on the same scale. It is standard

- to assume statistically independent returns* and to express a standard deviation

in annual terms. Thus in financial markets we define
Annual volatility = (1000./4)%, (1.2)

where A4 is an annualizing factor, the number of returns per year.’ In this way
volatilities of returns of different frequencies may be compared on the same
scale in a volatility term structure (§2.2.2, §3.3 and §4.4.1).

To understand what correlation is, consider a jeint density of two random
variables.® A joint density may be visualized as a mountain: the more
symmetric this mountain is about both the axes representing the two variables,
the less information can be gained about the value of one variable by knowing
the value of the other; that is, the lower the correfation between the two
variables. For highly correlated variables the joint density will have more of a
ridge in a direction between the axes of the two variables.

Figure 1.2 shows three ‘scatter plots’, where synchronous observations on each
of the returns are plotted as horizontal and vertical coordinates. A scatter plot
is a sample from the joint density of the two returns series, and so if the returns
have no correlation their scatter plot will be symmetrically dispersed, like the
one in Figure 1.2a; a high value on one axis will be no indication that the
corresponding value on the other axis will be high or low. But if they have a
high positive correlation the joint density will have a ridge sloping upwards, as
in Figure 1.2b; when one variable has a high value the other will also tend to
have a high value. If they have negative correlation the joint density will have a
downwards sloping ridge as in Figure 1.2¢; when one variable has a high value
the other will tend to have a low value, and vice versa.

Correlation is a measure of co-movements between two returns series. Strong
positive correlation indicates that upward movements in one returns series tend
to be accompanied by upward movements in the other, and similarly

4 Two random v;mahles X and Y are independent if and only if their joint density function (v, 3) is simply the
product of the two marginal densities. That is, if X has density fix) and Y has density g(») then X and ¥ arc

independent if and only if i(x, v)=fx)g(r).

% The annualizing factor is a normalizing constant: the variance increascs with the holding period but the
annualizing factor decreases. The number of trading days (or ‘risk days’) per ycar is usually taken for the
conversion of a daily standard deviation into an annualized percentage: that is. often 4==250 or 252 in (1.2). Notc
the continuation of this footnote in §2.1.1 (footnote 5).

8 The joint density f{x, 3} of two random variables X and Y is a real-valued function of the two variables where
the total area underneath the surface is one: [ [flx, »)dxdy=1. The joint probability that X takes values in one
range and Y takes values in another range is the area under the function defined by these two ranges.

Uncertainty will increase
as the holding period
increases, the

distribution will become
more dispersed and its
variance will increase
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Figure 1.2 (a) Zero correlation; (b) positive correlation; (c) negative correlation.

downward movements of the two series tend to go together. If there is a strong
negative correlation then upward movements in one series are associated with
downward movements in the other.

A simple statistical measure of co-movements between two random
variables is covariance, the first product moment about the mean of the joint
density function. That is, cov(X, Y)=E[(X—u,)(Y—u,)], where py=E(X) and
y=E(Y). Covariance is determined not only by the degree of co-movemept
but also by the size of the returns. For example, monthly returns are of a much



