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Preface

Had anyone predicted that new discoveries would be made in dynamics
thre: hundred years after publication of Newton’s Prmctpta, they would
have been thought naive or foolish. Yet in the last decade new phenomena
have been observed in all areas of nonlinear dynamics, principal among
these being chaotic vibrations. Chaotic oscillations are the emergence of
randomlike motions from completely deterministic systems. Such motions
had been known in fluid mechanics, but they have recently been observed
in low-order mechanical and electrical systems and even in simple one-

degree-of-freedom problems. Along with these discoveries has come the '

recognition that nonlinear difference and differential equations can admit
bounded, nonperiodic solutions that behave in a random way even though
no random quantities appear in the equations. This has prompted the
development of new mathematical ideas, new ways of looking at dynaaical
solutions, which are now making-4hes way 1nto the laboratory.

It is the purpose of thy Book i Belp Tqnslate these mathematical id zas
and techniques nto lagfyigesthat ¢ngimpersynd applied scientists can use
to study chaotic vibraioni.~Although 1 ameamexpenmenter in dynamics, 1
have had to acquire & certamrjevel of mathemdical understanding of these

new ideas, such as stfange attsactot, Poiacaré rap, or fractal dimension, in:

order to study chaotfiphenpnena1n the 1aporgiory A number of excellent
‘mathematical treat:se@pn @Iecfc dynamics pave appeared recently. I have
attempted to read and MGIAT thiése new copcepts with the help of my more
theoretical colleagues at Cowmgll Univetfity and attempt in this book to
explain the relevance of this new language of dynamics to engineers,
especially those who must study and measure vibrations. I believe that these

vii
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vidi Preface

new geometric and topological concepts in dynamics will become part of
‘the laboratory tools in vibration analysis in the same way that Fourier
analysis has become a permanent part of engineering expenmental tech-
nique. -
Besides the infusion of new ideas, the study of chaotic vibrations is
important to engineering vibrations for several reasons. First, in mechanical
systems a chaotic or noisy system makes life prediction or fatigue analysis
difficult because the precise stress history in the solid is not known. Second,
the recognition that simple nonlinearities can lead to chaotic solutions
raises the question of predictability in classical physics and the usefulness
of numerical simulation of nonlinear systems. It is part of the conventional
wisdom that larger and faster supercomputers will allow one to make more
- precise predictions of a system’s behavior. However, for nonlinear problems
with chaotic dynamics, the time history is sensitive to initial conditions and
premse knowledge of the future may not be possible even when the motion
is periodic.

Many new books on chaotic dynamics assume that the reader has had
some exposure to advanced dynamic$, nonlinear vibrations, and advanced
mathematical techniques. In this book I have tried to work from a back-
ground that a B.S. engineering graduate would have; namely, ordinary
differential equations, some intermediate-level dynamics, and vibration or
systems dynamics courses. I have also tried to give examples of systems
with chaotic behavior and to offer engineers the tools to measure, predict,
and quantify chaotic vibrations in physical systems.

In Chapter 2 1 describe some of the characterisiics of chaotic vibrations
and how to recognize and test for them in physical experiments. The types
of physical models and experimental systems in which chaotic behavior has

-been observed are given in Chapter 3. In Chapter 4 some experimental
techniques are presented to measure chaotic phenomena, including Poin-
caré maps. This is a “how to do it” chapter and can be skipped.by those
looking for an overview of the field. Chapters'5 and 6 are more mathemati-
cal and explore what criteria now exist to predict when chaotic vibrations
will occur and the new concepts in fractal mathematics. Fractal concepts
are at the center of many of the new ideas in nonlinear dynamics. Beautiful
pictures of fractal geometric objects have appeared in the popular press and
have added an aesthetic dimension to the study of dynamics. In Chapter 6 I
attempt to relate fractal ideas to specific apphed problems in nonlinear
dynamics.

One ‘might ask: Why.write this book now while the field of nonlinear
vibrations is undergoing such rapid change? First, it was an opportune time
" since I was asked to prepare and deliver eight lectures on chaotic vibrations
-at the Institute for Fundamental Technical Problems in Warsaw, Poland, in
August 1984. This book is an outgrowth of those lectures. Second, during
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1984-1985 I was invited to give lectures in chaotic vibrations at nearly
thirty universities and research laboratories. Many colleagues expressed a
desire for a book on chaos, aimed at those in the applied sciences. Also, I
felt that many engineers in the field of vibrations were unaware of the
exciting new things happening in dynamics. Engineering researchers, armed
with new tools of dynamical systems, will I am sure make further advances
into this new area by exploring new applications and developing more
practical tools for measuring and describing these new phenomena.

I want to thank my colleagues at Cornell University in theoretical and
applied mechanics, especially Philip Holmes and Richard Rand, who have
patiently tried to explain these new mathematical ideas to me. I have also
had useful conversations with John Guckenheimer, formerly of the Univer-
sity of California at Santa Cruz but now at Cornell. The deliberate lack of
rigor in this book in describing some of the new geometric and topological
concepts must be blamed on me, however. I have proceeded on the
assumption that the book will succeed only if it stimulates interest in this
new field. Given this stimulation, I hope the reader will seek out racre
mathematical references to provide more detailed and precise discussion of
these new ideas. i -

Finally I wish to recognize the contributions of graduate students and
research associates who have worked so enthusiastically with me on prob-
lems of chaos: Joseph Cusumano, Mohammed Golnaraghi, Guang-Xian L.
Chih-Kung Lee, Bimal Poddar, Gabriel Raggio, and Stephan Shaw (now at
Michigan State University). Special mention is also made of the technical
help of Stephen King and William Holmes who helped design some f the
electronic instrumentation in our experiments on chaotic vibration.

Regarding the references at the end of this book, I did not attemp* to
include all the historically significant papers in chaotic studies and I
apologize to'those researchers whose fine contributions to the subject have,
not been cited. The inclusion of more of my own papers than thos: of
others must be interpreted as an author’s vanity and not anv measure of
their relative importance to the field.

I also want to acknowledge funding from the National Science Foundu-
tion through the solid mechanics program under Dr. Clifford Astill. from
the Air Force Office of Scientific Research through Dr. Anthcny Amos of
the Aerospace Section, from the Office of Naval Research through Dr.
Michael Shiesinger of the Physics Division, from the Army Research Office
through Dr. Gary Anderson of the Engineering Sciences Division and from
the IBM Corporation.

Francis C. Moox

[thaca, New York
May 1987
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Introduction: A New Age
of Dynamics |

In the beginning, how the hea:’ns and earth rose out of chaos
. Milton, Paradise Lost, 1665

1.1 WHAT iS CHAOTIC DYNAMICS?

For some, the study of dynamics began and ended with Newton’s Law of
F = mA. We were told that if the fcrces between particles and their initial
positions and velocities were given, one could predict the motion or history
of a system forever into the future, given a big enough computer. However,
the arrival of large and fast computers has not fulfilled the promise of
infinite predictability in dynamics. In fact, it has been ‘discovered quite
recently that the motion of very simple dynamical systems cannot always be
predicted far-into the future, Such motions have been labeled chaotic and
their study has prompted a discussion of some exciting new mathemati-
cal ideas in dynamics. With the approaching tricentennial of Newton’s
Principia (1687), in which he introduced the calculus into the study of
dynamics, it is appropriate that three centuries later new phenomena have
been discovered in dynamics and that new mathematical concepts from
topology and geometry have entered this venerable science.
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Figure 1-1 Turbulent wake in the flow past a circular cylintler [courtesy of R. Dumas].
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What is Chaotic Dynamics? 3

The nonscientific concept of chaos' is very old and often associated with

a physical state or human behavior without pattern and out of control. The
term chaos often stirs fear in humankind since it implies that governing
laws or traditions no longer have control over events such as prison riots,
civil war, or a world war. Yet there is always the hope that some underlying
force or reason is behind the chaos or can explain why seemingly random
- events appear unpredictable.
In the physical sciences, the paragon of chaotic phenomena is turbu-
" lence. Thus, a rising column of smoke or the eddies behind a boat or
aircraft wing? provide graphic examples of chaotic motiop (Figure 1-1).
The fluid mechanician, however, believes that these events are not random
because the governing equations of physics for each fluid element can be
written down. Also, at low velocities, the fluid patterns are quite regular and
predictable from these equations. Beyond a critical velocity, however, the
flow becomes turbulent. A great deal of the excitement in nonlinear
dynamics today is centered around the hope that this transition from
ordered to disordered flow may be explained or modeled with relatively
simple mathematical equations. What we hope to show in this book is that
these new ideas about turbulence extend to solid méchanical and electrical
continua as well. It is the recognition that chaotic dynamics are inherent in
all of nonlinear physical phenomena that has created a sense of revolution
in physics today. :

We must distinguish here between so-called random and chaotic mo-
tions. The former is reserved for problems in which we truly do not know
the input forces or we only know some statistical measures of the parame-
ters. The term chaotic is reserved for those deterministic problems for
which there are no random or unpredictable inputs or parameters. The
existence of chaotic or unpredictable motions from the classical equations
of physics was known by Poincaré.® Consider the following excerpt from

! The origin of the word chaas is 2 Greck verb which means 7o gape open and which was often
used to refer to the primeval emptiness of the universe before things came into being
(Encyclopaedia Britannica, Vol. 5, p. 276). To the stoics, chaos was identified with water and
the watery state which follows the periodic destruction of the earth by fire. Ovid in Meta-
morphises used the term to denote the raw and formless mass in which all is disorder and from
which the ordered universe is created. A modern dictionary definition of chaos (Funk and
Wagnalls) provides two meanings: (i) utter disorder and confusion and (ii) the unformed
original state of the universe.

*The reader stiould look at the beautiful collection of photos of fluid turbulent phenomena
compiled by Van Dyke (1982).

3Henri Poincaré (1854-1912) was a French mathematician, physicist, and philosopher whose
career spanned the grand age of classical mechanics and the revolutionary ideas of relativity
and quantum mechanics. His work on problems of celestial mechanics led him to questions of
dynamic stability and the problem of finding precise mathematical formulas for the dynamic



4 Introduction: A New Age of Dynamics
this essay on Science and Method:

It may happen that small differences in the initial conditions produce very
great ones in the final phenomena. A sinall error in the former will produce an
enormous error in the latter. Prediciica becomes impossible.

i the cncrent literatare, chaotic is a term assigned to that class of
motions in deterministic physicel and mathematical systems whose time
fuctory has a sersitive dependence on initial conditions.

Tvio exemples of mechanical systzms that exhibit chaotic dynamics are
showr o Figure 1.2, The first 1s 4 thought experiment of an idealized
bithiard ball {rigid body rotation is neglected) which bounces off the sides of
an elliptical billiard table. When elastic impact is assumed, the energy
remains conserved, but the ball may wander around the table without
exactly repeating a previous motion ‘or certain elliptically shaped tables.

Another example, which the read>r with access to a laboratory can see
for oneself is the ball in a two-well potential shown in Figure 1-25. Here
the ball has two equilibrium states wher the table or base does not vibrate.
However, when the table vibrates with periodic motion of large enough
amplitude, the ball will jump from one well to the other in an apparently
random manner; that is, periodic input of one frequency leads to a
randomiike output with a broad spertrum ¢f frequencies. The generation of
a continuous spectrum of frequenciss below the single input frequency is
one of the characteristics of chaotic vibrations (Figure 1-3).

Loss of information about initial conditions is another property of a
chzotic system. Suppose one has ine abilitv to measure a position with
accuracy Ax and a velecity with aceuracy Av. Then in the position—velocity
plane (known as the phase plane) wz can divide up the space into areas of
size Ax Av as shown in Figure 1-4 If we are given initial conditions to the
stated accuracy, we know the systers 1s somewhere in the shaded box in the
phase plane. But if the system is chaotic, this uncertainty grows in time to
N(1) boxes as shown in Figure 1-45. The growth in uncertainty given by

N = Nye" (1-1.1)
is another property of chaotic systems. The constant 4 is related to the

concept of entropy in information theory (e.g., see Shaw, 1981, 1984) and
will also be related to another concept called the Lyapunov exponent (see

history of a complex system. In the course of this research he invented the “the method of
sections,” now known as the Poincaré section or map.

An excelient discussion of uncertainties and determinism and Poincaré’s ideas on these
subjects may be found in the very readable book by L. Brillouin (1964, Chapter IX).



1
VN e N
v W72 s
,// ,///% 4 /

by .
Figure 1-2 (a) The motion of a ball after several impacts with an elliptically shaped billiard
table. The motion can be described by a set of d:screte numbers (s,, ¢,) called a map. (b) The
motion of a particle in a twe-well potential under periodic excitation. Under certain conudi-
tions, the particle jumps back and forth in a pericdic way. thatis, LRLR ---,or LLRLLR - - -,
and so on, and for other conditions the jumping is chaotic that is, it shows no pattern in the
sequence of symbols L and R.
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Figure 1-3  The power spectral density (Fourier transform) of chaotic motion in a two-well
potential (after Y. Udea. Kyoto Universitv).
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Figwre 1-4 An illustration of the growth of uncertainty or loss of information in a dynamical
system. The black box at time 1 = ¢, represents the uncertainty in initial conditions.

Chapt'er 5) which measures the rate at which nearby trajectories of a system
in phase space diverge.

The reader may ask: With predictability lost in chaotic systems, is there
any order lef: in the system? For dissipative systems the answer is yes; there
is an underiying structure to chaotic dynamics. This structure is not
apparent by looking at the dynamics in the conventional way, that is, the
output versus time or from frequency spectra. One must search for this
order in phase space (position versus velocity). There one will find that
chaotic motions exhibit a new geometri: property called fractal structure.
One of the goals of this book is to teach how to discover the fractal
structure in chaotic vibrations as well as io measure the loss of information
in these randomlike motions. ‘

Why Should Engineers Study Chaotic Dynamics?

Recently, the subject of chaos has become newsworthy—the study of
mathematical chaos that is. Many popular science magazines and even The
New York Times and Newsweek have carried articles on the new studies
into mathematics of chaotic dynamics. But engineers have always known
about chaos—it was called noise or turbuience and fudge factors or factors
of safety were used to design around these apparent random unknowns that
seem to crop up in every technical device. So what is new about chaos?



