The
Basic
Hernel
J0UICE
bode
Secrels

William Frederick Jolitz and
Lynne Greer Jolitz

OPERATING SYSTEM
SOURCE CODE SECRETS

The most comprehensive
operating system series ever!
This “Gray’s Anatomy” is a must
for understanding where UNIX,
Windows NT, Mach, and other

modern systems will
head in the next

decade.



Source Code Secrets
The Basic Kernel

Lynne Greer Jolitz
and William Frederick Jolitz

Peer-to-Peer Communications
San Jose, California



Operating System Source Code Secrets
Volume 1: The Basic Kernel
Copyright ©1996 William and Lynne Jolitz. All rights reserved.

“Source Code Secrets” is a trademark of William and Lynne Jolitz.
Some code discussed in this book is copyright ©1989, 1991-1993

the Regents of the University of California. All rights reserved. This
software is based in part on BSD Networking Software, Release 2
licensed from the Regents of the University of California.

Published by Peer-to-Peer Communications, Inc.
P.O. Box 640218

San Jose California 95164-0218, U.S.A.

Phone: 800-420-2677

Fax: 408-435-0895

E-mail: info@peer-to-peer.com

Cover Design: Susan Wilson, Palo Alto, CA
Production: Barclay Press, Newberg, OR
Printing: Paramount Graphics, Beaverton, OR

Printed in the United States of America
234 5 6 7 8 9 10

ISBN 1-57398-026-9

Peer-to-Peer offers discounts on this book when ordered in bulk
quantities. For more information, contact the Sales Deptartment
at the address above.

For a catalog of Peer-to-Peer Communications’ other titles,
please contact the publisher.



This book is
Volume I

of
Operating System
Source Code Secrets

FOAREE A



ML, T ARPDFIFE L www. ertongbook. com



This Book is Dedicated to
William Leonard Jolitz (dec.)

An engineer whose knowledge
and dreams have traveled
beyond the solar system.






FOREWORD

An operating system is more than just a set of simple running modules—it is actually
. a complicated mechanism. The heart of an operating system is the basic kernel. Like a
human heart, the basic kernel provides a complex operating system a fundamental
means to distribute resources to all other subsystems in order for them to function
independently. Without the basic kernel, no other portion of the operating system can
“live.” The virtual memory system, on the other hand, is the brain of an operating
system, since it is through the virtual memory system that temporary and permanent
memory is stored and accessed. Like a human brain, temporary memory is used as a
workspace to assemble a new item before it is stored into permanent memory.

The modules and subsystems of the kernel, like biological ones, are also interdependent.
Even “illnesses” which arise in one module and subsystem can manifest themselves in
another. For example, in biological systems, if blood circulation is inadequate, the
problem can appear as a neurologic disorder (i.e. dizziness or blurred vision).
Likewise, if in the basic kernel (heart) interrupts are blocked for too long, the
networking software (the nervous system) will not be able to acknowledge fast
enough, resulting in service which is inefficient or fails. If the kernel memory allocator
in the basic kernel has been misdesigned so that it suffers memory “leaks” (a common
problem in commercial operating systems), the virtual memory system (brain) will
suffer memory “loss,” eventually resulting in system failure. As such, a thorough
understanding of the entire kernel is crucial to proper operating system design.

Other modules and systems in the kernel have similar analogs in biological systems.
The filesystem forms the skeletal structure of the operating system. Sockets, acting as
conduits for information, outline a nervous system structure for the operating system
as a whole, while the Internet networking protocols act as neurotransmitters for this
information. The combination of these two modules complete the central nervous
system for the operating system.

A biological analogy to operating systems design has its limits, since the primary
motivation of biological systems is to survive and replicate. Neither of these functions
can yet be done by any operating system, since our knowledge of control dynamics is

FOREWORD 7



still in its infancy.' The point of this analogy is not to achieve complete similarity but
instead to foster an understanding of the roles, responsibilities, and interdependencies
of the portions of the kernel, just as an anatomy text organizes the study of the human
body as a means for exposition. With this series we undertake to organize a complete
understanding of an operating system kernel in order to give the reader the ability to
evaluate and evolve any operating system.

! Error recovery and clustering are two simple mechanisms discussed throughout this series that attempt to replicate a
portion of these functions, but these are still primitive means compared with the elegance of biological systems.

8 SOURCE CODE SECRETS: THE BASIC KERNEL



Obtaining an understanding of the core operating system kernel is not as simple as
might appear—even if one has access to source code. Real world operating systems,
unlike their academic paper counterparts, are trendy beasts, loaded down with
mounds of additional hacks, functions, files, and other superfluous items with no
regard for design, flexibility, extensibility, or future technology needs. The only thing
that matters (and the only thing that a team of overloaded programmers have time for)
is responding to customer demands in a timely manner.

Wading through all of this additional code to find the gems is a daunting task.
However, there is a basic structure and rational design at the heart of even the most
bloated operating system, but, like an archeologist searching for that elusive fossil, it
may be buried so deeply that one could spend a lifetime trying to find it.

The 386BSD Operating System Reference Series describes in detail the design and
implementation decisions affecting key kernel source files made during the
development of an operational kernel—386BSD. By discussing these basic components
in detail and cross-referencing them to other components in the 386BSD kernel, the
interwoven and complex structure of the kernel begins to take shape in a form which
emphasizes its minimalist roots in a comprehensible manner. Through a rigorous
discussion of these kernel files, the strengths and flaws of the various components of
each file are revealed.

This agonizing reappraisal directly results in either new design or redesign (some of
which appears in 386BSD Release 1.0), or a strengthened justification for the current
design based on meticulous scrutiny—not assumption. Finally, a thorough
understanding of current implementation feeds directly back into an understanding of
the basic levels of abstraction which describe the kernel at its most elemental.!

Future direction and specific implementation suggestions to the reader are discussed
in detail for these files. By gaining insight into the past, present, and future directions
of 386BSD development, the reader now has enough information to explore the kernel

! See Chapter 2, 386BSD From the Inside-Out (due 1997), for a detailed discussion of kernel
level of abstraction.

PREFACE 9



further by working independently towards the future and not wasting time
reinventing or reincorporating obsolete code from the past.

Among the volumes already written or in progress in this reference series are: The
Basic Kernel, The Virtual Memory Subsystem, The Filesystem, POSIX and
Windows Sockets, The Internet Protocol Suite, and The UFS Filesystem. It is from
the basic files and subsystems discussed in these volumes that a modern operating
system is made.

Isn’t Source Code Enough?

The question which begs at this point is typically something along the lines of “Why
should I bother reading about how the system kernel is constructed and designed
when I already have the source code and an operational system to play with—after all,
don’t I already have everything I need to understand, fix, and modify it?” In
particular, the wealth of 386BSD source code (including utilities and applications
programs) must appear to answer all the dreams of the user previously denied any
access to source code and system software.

Although the authors have been working with operating systems source code for a fair
number of years (count in the decades), even we find new surprises with a kernel
which has changed over 20 years of development and has had literally thousands of
man-years put into it. As such, while having the source code is a powerful thing, it is
not nearly enough to provide an overview of its many designers’ intentions. If this
were true, for example, Landau’s landmark book on Classical Mechanics? would
provide all the information required for the beginning physics student to derive all
classical mechanics formulas (including Hamiltonian equations) with no further need
for additional texts, lectures, or other information. While there are probably a few
genius physicists out there who might claim to be able to do just this, the vast majority
generally require a greater degree of insight from a variety of sources. In sum, it is a
difficult area to comprehend immediately—even if you are a genius.

It is no longer enough to possess an operational operating system. Instead, it is
imperative that its details be documented, examined and explained so that rational
revision and extension is possible. Otherwise, it becomes difficult to determine if an
operating system is correctly architected and implemented because the arcane details
overwhelm the structure and obliterate the fine points of its design. In those cases, it
may be impossible to tell the difference between an improvement in an artifact of the
implementation and an improvement in a fundamental operating system paradigm
shift. Indeed, the source code may even unintentionally obfuscate the paradigm
beyond recognition, if it were not for other “sources” of information on the given
system.

2L. D. Landau, & E.M. Liftshitz, Mechanics, Pergamon Press, Oxford (1960).

10 SOURCE CODE SECRETS: THE BASIC KERNEL



A modern operating system is far more than just a body of code—it must have well-
justified reasons for being. If the rationale behind it is not firm, probably neither is the
implementation. As such, both may require considerable revision to better
approximate the ideal case.

Structure of This Book

Source Code Secrets Volume 1 examines the basic kernel source files required for a
minimalist kernel design. Every operating system has a “simplest” model of form and
structure, and many of them use similar mechanisms to deal with similar
requirements. The primitive mechanics of the kernel and details of the kernel program
as implemented on a target computer processor must be described in order to adapt
the rest of the kernel program to that processor. The kernel itself is a program that
benefits from a set of services that are used to make the program easier to manage and
more concise. Not only must the kernel run a single application program, but it must
allow for many application programs to be run concurrently through the concept of a
process. And finally, the interface to each of these processes must reflect the POSIX
standard operating system interface which, in this implementation, is directly
implemented by the kernel.

This book is divided into five sections: Introduction to the Basic Kernel (Chapter 1),
The Machine-Dependent Kernel (Chapters 2 and 3), Internal Kernel Services
(Chapter 4), The Process Object (Chapters 5, 6, 7, and 8), and POSIX Operating
System Functionality (Chapter 9).

An instructor’s guide containing course outline and lecture notes for this entire series
is in progress. Contact the publisher for further information.

How to Use This Book

Since this book describes the actual implementation of a working basic operating
system kernel, it is intended to be used in tandem with an operating systems structure
and design book such as 386BSD From the Inside-Out. Examples and laboratory
assignments should:

e Make concrete the concepts presented in each chapter.
¢ [llustrate the competing choices and the cost trade-offs implied.
¢ (Clearly delimit how far the implementation may be extended.
In addition, code should be examined from the very beginning, from chapter to

chapter, as we see the basic kernel built from the lowest level of abstraction layers of
the basic kernel to the highest levels.

PREFACE 11



386BSD Source Code and Other Information

In 1989, 386BSD was begun by the authors as a means to encourage new ideas in
operating systems and networking design and has gone through a number of major
and minor releases. The port of BSD to the 386 PC was chronicled in a 17-part feature
series published in Dr. Dobbs Journal called Porting UNIX to the 3862 This series is
still one of the best references to understanding the genesis of 386BSD, as well as
applying the methodology of an operating systems port to a new architecture.

The complete 386BSD operating system is now available as a bootable Window /UNIX
CD-ROM containing over 574 Mbytes of source and binary. It also contains the
complete text of the article series as will as other hyperlinked information on 386BSD
by the authors in Windows help files. The 386BSD Reference CD-ROM can be
ordered using the order form at the very back of the book. It is strongly recommended
for any serious study of operating systems. In addition, up-to-date information on
386BSD can be had by examining the 386BSD web site http:/ /www.386bsd.org/

Acknowledgements

386BSD has been a continuing work since its genesis in 1989 by the authors, and while
it might appear complete, there is still much more to explore. The basis work of
386BSD actually owes its lineage to the talents of a great many people over the last
thirty years, from the contributions of those who worked on prior operating systems
projects such as CTSS, the Berkeley TimeSharing System, MULTICS, UNIX, MACH,
and of course Berkeley UNIX, coupled with more recent contributions (primarily in
the areas of utilities and applications) by people on the Internet.

This current project would not have been possible without the help and
encouragement of many people who wanted to see this legacy continued into the
future. We would especially like to thank Thos Sumner for his critical review and
suggestions while we wrote this book. We would also like to thank Peter Hutchinson,
Manny Sawit, and Stan Barnes of Miller-Freeman for their unstinting support of this
documentation project, and Jon Erickson and Ray Valdéz of Dr. Dobbs Journal for
their support of our early porting efforts (resulting in an article series). Finally, we
would like to thank Paul Fronberg for his encouragement in talking about and
teaching this material.

In the production of this book and formulation of the rest of this series, we would like
to thank Dan Doernberg and Rachel Unkefer, Chris MacIntosh (production
coordination), Darwin Melnyk and Darren Gilroy (production), and Susan Wilson
(cover art), Daniel Hobbs (proofing and word list), and Hank Kennedy (contracts).

* January through November 1991 and February through July 1992. Follow-on articles on
386BSD have since appeared in this magazine as well.

12 SOURCE CODE SECRETS: THE BASIC KERNEL



Perspective: 386BSD and the “Real World”

The perspective of these writings is a combined set of views reflecting stability,
standards compatibility, raw “bit-level” performance, and extensibility /scalability. No
attempt is made to extend this perspective to other areas, such as providing compati-
bility with arbitrary commercial products, nor are testing or support isolation a
portion of this work since this is not intended as a commercial quality operating
system. While the quality of most commercial systems may be in decline, this should
not be viewed as a permanent condition but instead one that will be eventually
remedied by market forces when the customer has become sufficiently educated to see
through the smoke and haze. As a result, providing enough perspective to see through
the marketing smokescreen to the actual work which underlies it is another key
portion of this work (something which may not necessarily be appreciated by those
proffering commercial systems).

Acuity is thus a deft tool to separate operating system fact from fancy. We hope our
work here helps you to hone your edge—if just a bit sharper. If so, please use it in a
positive and productive direction.

Finally: It was stated at the outset, that this system would not be here,
and at once, perfected. You cannot but plainly see that I have kept my
word. But I now leave my cetological System standing thus
unfinished, even as the great Cathedral of Cologne was left, with the
crane still standing upon the top of the uncompleted tower. For small
erections may be finished by their first architects; grand ones, true
ones, ever leave the copestone to posterity. God keep me from ever
completing anything. This whole book is but a draught - nay, but the
draught of a draught. Oh, Time, Strength, Cash, and Patience!

—Herman Melville, Moby Dick, Chapter 32

PREFACE 13






FOREWORD
PREFACE

Isn't Source Code Enough?

Structure of This Book

How to Use This Book

386BSD Source Code and Other Information
Acknowledgements

Perspective: 386BSD and the “Real World”

CONTENTS

INTRODUCTION TO THE BASIC KERNEL
The Machine-Dependent Kernel
The Internal Kernel Services
The Process Object
POSIX Operating System Functionality
Structure of the Kernel Program
Structure of the Annotations
Perspective: Why Write Annotations?

ASSEMBLY ENTRY AND PRIMITIVES (i386/locore.s)
Locore.s Development Decisions
Historical Origins
System Initialization and Operation
The Context Switch Mechanism
Entry to / Exit from the Kernel
Kernel Program as Loaded by the Bootstrap
Kernel Initial Memory Map
locore.s Functions and Terminology
What is start?
What is reloc?
What is rfillkpt?
What is fillkpt?
What is icode?

10
11
11
12
12
13

15

23
24
24
25
26
26
26
27

29
29
30
30
31
31
32
33

35
51
51
52
53

CONTENTS

15



What is sigcode? 55

What is ssdtosd? 56
What is copyout? 57
What are copyout_4, copyout_2, and copyout_1? 62
What is copyoutstr? 65
What is swich? 68
What is gswtch? 72
What is idle? 73
What are Processor Exceptions? 74
How are Processor Exceptions Implemented? 74
386BSD Processor Exception Design Choices and Trade-Offs 77
What are Peripheral Device Interrupts? 77
How are Peripheral Device Interrupts Implemented? 78
What are Set Processor Level Functions? 90
How are Set Processor Level Functions Implemented? 92
What are System Call ‘Call Gates'? 96
How are System Call Gates Implemented? 97
CPU-SPECIFIC PRIMITIVES (i386/trap.c, i386/cpu.c) 101
Processor Exception and System Call Entry Handling: i386/trap.c 102
Functions Contained in the File i386/trap.c 102
What is trap()? 103
What is trapexcept()? 119
What is trapwrite()? 121
What is copyin3()? 122
What is syscall()? 124
What is systrap()? 131
CPU Kernel Facilities: i386/cpu.c 133
Threads versus Processes 133
POSIX Signals 133
Functions Contained in the File i386/cpu.c 134
What is cpu_tfork? 134
What is cpu_texit ? 142
What is cpu_execsetregs()? 145
What is cpu_signal()? 146
What is cpu_signalreturn()? 150
What is cpu_reset()? 153
What is cpu_ptracereg()? 154
INTERNAL KERNEL SERVICES (kern/config.c,
kern/malloc.c) 157
Issues in Configuration 157
PC Device Conflicts 158
The Built-in Obsolescence of PC Static Configuration Mechanisms 159
Plug and Play: A Growing Necessity 160
Configuration in 386BSD: kern/config.c 161

16 SOURCE CODE SECRETS: THE BASIC KERNEL



