Introduction to Geophysics ## BENJAMIN F. HOWELL, JR. Professor of Geophysics and Head, Department of Geophysics and Geochemistry, The Pennsylvania State University #### PREFACE This work was written as a beginning college textbook in geophysics. Its principal objectives are to familiarize the reader with the scope of geophysics in relation to the other sciences, to give him some insight into the methods used by geophysicists to study the earth, and to outline some of the most important discoveries of these researches. When the author first began to teach geophysics in 1949, he found that several excellent books on geophysical prospecting were available. In general geophysics, on the other hand, all the available texts in English either were concerned with some individual subdivision of this science such as seismology, to the exclusion of all others, or appeared to be written on the assumption that the reader already knew a great deal about the subject. This lack of a comprehensive introductory text led to the present work. It has been written with a course composed half of juniors and seniors and half of graduate students in mind. The students in the author's course are drawn from many curricula: physics, geology, mineralogy, petroleum engineering, mining engineering, as well as geophysics and geochemistry. The book is intended to satisfy the needs of a broad range of specialists for a basic knowledge of the fundamental principles of geophysics. It is assumed that the student using the text will be familiar with the terminology of both geology and physics. One semester of geology and one year of college physics should be sufficient preparation for understanding the ideas presented here. A nodding acquaintance with calculus is also assumed. It is the author's observation that the average geology student has the same opinion of calculus that a small boy has of castor oil. He has a high respect for it but avoids it with a terror which cannot be touched by reason. This is indeed unfortunate, but since it is the case, the use of mathematics has been kept at a minimum. Yet geophysics is an exact science, and geophysical ideas can in many cases be adequately presented only with the help of formulas. Elementary calculus has therefore been employed wherever its use leads to greater clarity or conciseness in presenting information. Where formulas are derived, all steps are included in the derivation so that the student who is not quick in mathematics will have no difficulty in understanding what is being stated. In the few cases, such as in Chap. 10, where moderately complex mathematical vi PREFACE treatments are necessary for thorough presentation of fundamental concepts, the text is so written that the sections containing the mathematical proofs can be skipped over by students unable to appreciate them. This material has been included for the physicist using this text, since he will ordinarily desire a rigorous treatment. It is planned that this book should serve not only as a textbook but as a reference work. Since geophysics has developed relatively rapidly as a science in recent years, there is a great deal of basic information which is still published only in one or two places, usually in technical journals. Because of this, an extensive bibliography has been included, especially for those subjects not thoroughly treated in more specialized works. All references are at the end of the book, and throughout the text, references are made simply by stating the author's name and the year of the publication. Since this is a textbook and not a technical paper, the references used are intended, in general, to direct the reader to a readily available, more detailed treatment of the subject, wherever possible a book or summary paper. References to original sources can usually be found in these secondary sources. It is hoped that advanced students and others using this book will find these references a stimulating introduction to geophysical literature. The writing of this book would not have been possible without the help of many friends and fellow geophysicists who gave generously of their time and advice. The author particularly wishes to thank the following for reading chapters related to their specialties and suggesting improvements and additions to the material presented: O. Frank Tuttle, Leonard F. Herzog, and E. James Moore of The Pennsylvania State University; Beno Gutenberg of the California Institute of Technology; Sigmund Hammer of Gulf Research and Development Company; Harry H. Hess and the author's father, B. F. Howell, of Princeton University; and E. H. Vestine of Rand Corporation. The kind cooperation of the many individuals and organizations who supplied a large part of the illustrations used is greatly appreciated. Specific acknowledgement will be found in each case in the text. Benjamin F. Howell, Jr. #### INTRODUCTION TO GEOPHYSICS Copyright © 1959 by the McGraw-Hill Book Company, Inc. Printed in the United States of America. All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers. Library of Congress Catalog Card Number 58-11175. ## CONTENTS | Preface | | | | | | | | | | | | | v | |----------|-------------------------------------|------|------|------|-------|--------|-------|--------|------|-------|------|---|-------| | 1. Intro | duction | | | mi | | | | | | | | | 1 | | 2. Orig | in of the Earth | | | | | | | | | • | | | 7 | | 2.1 | Moone of studying the universe | | | | | | | | | | | | 8 | | 2.2 | Some features of the universe | | | | | | | | | | | | 10 | | 2.3 | The solar system | | | | | | | | | | * 99 | | 12 | | 2.4 | Condensation hypotheses | | | | | | | | | | | | 19 | | 2.5 | Fragmentation theories | | | | | | | : | | | | | 22 | | 3. Orig | in of the Moon | | | | | | | | 1314 | | | | 26 | | 4. Geo | chronology | | | | | | | | | | | | 29 | | 4.1 | Age of the moon | | | | | | | | | | | | 29 | | 4.2 | The red shift | | | | | | | | | | | | 30 | | 4.3 | Radioactive disintegration . | | | | | | | | | | | | 30 | | 4.4 | Age of oldest rocks | | Ŋ. | | | | | | | | | | 37 | | 4.5 | Age of meteorites | | | | | | | | | | | | 38 | | 4.6 | Age of the crust | | | | | | | | | | | | 40 | | 4.7 | Other radioactive age determination | tion | S | | | 19 | | | 30 | | | | 40 | | 4.8 | Rate of erosion and sedimentation | n | | | | | | | | | | | 41 | | 4.9 | Age of the oceans | | | | | | | | | | | | 44 | | 4.10 | Figures from astronomic evidence | 6 | | | | III DE | 11/19 | | | | | | 45 | | 4.11 | Cooling of the earth | | | | | | | | | | | | 46 | | F. T | perature of the Earth. | | | | | | | | | y Jin | | | 47 | | | perature of the Edit.i. | | | | | | | | | | | | 48 | | 5.1 | Sources of error in measurements | 5 | | | ioi | | ion | b. | | | | | 48 | | 5.2 | Surface temperature | | 21 7 | | | | | * | | | 120 | | 50 | | 5.3 | Factors affecting temperature gr | adı | ent | | | | | | | | | | 56 | | 5.4 | Sources of the earth's heat . | | | | | | | | | | | | 58 | | 5.5 | Distribution of radioactive elem- | | | | | | | | | | 100 | | 62 | | 5.6 | Variation of temperature with d | | | | | | | in the | nin. | | | | 7.52 | | 6. Seis | mic Waves | | | | | | | | | 1. | | • | 65 | | 6.1 | Definitions | | | | | | | | | . 1 | 170 | | 65 | | 6.2 | Microseisms | | | | | | | | | | | | 66 | | 6.3 | The Assam earthquake of 1897 | | | | | | | | | | | | 67 | | 6.4 | The goigmograph | | | | | | 100 | | | | | | 70 | | 6.5 | Strain goigmomators | | | | | nge. | | | | : | | | 77 | | 6.6 | Seismograms | | | | | | | | | | | | 78 | | 6.7 | Seismograms | | | dik. | 100 | | | | | | | | 79 | | 1921 | servational Seismology | | | | | | | | | | | | 83 | | 7.1 | Earth motion | | | | | | | | | | | | 83 | | | Foreshocks and aftershocks . | | | | reci. | | | | | | | | 86 | | 7.2 | r oresnocks and altersnocks . | | | | | | | | | | 100 | | N. N. | | *** | | COLITELITE | |------|--|------------| | /iii | | CONTENTS | | 7.3 | Epicenter and focus | | | | | | | | | | | | | | 86 | |--|--|----------
--	--	--	--
--	--	--	------------------
10.1 10.2 10.3 10.4 10.5 10.6 10.7	Derivation of basic equations Strains resulting from dilatat Shearing strains Equations of motion Dilatational waves Shear waves Reflection and refraction .	s ion	
(form	idelle ide idelle ide ide idelle idelle idelle idelle ide ide ide ide ide ide ide ide ide id	dan dan dan dan dan dan dan dan dan dan	eng eng eng eng
organistics of the second seco	los y	the state of s	
idelle ide idelle ide ide idelle idelle idelle idelle ide ide ide ide ide ide ide ide ide id	dan dan dan dan dan dan dan dan dan dan	eng eng eng eng	in the state of th
--	--	---	--
311 317		21.1 21.2	Geological features of mounts Laboratory experiments .
24.8	Measurement of variations of the magnetic field		. 369
used to explain the behavior of matter 'n its varied natural forms. They have sometimes been called descriptive sciences because in the past so much of the research in these fields has been devoted simply to studying the various forms in which matter can and does occur in nature. However, study of the universe and its inhabitants has not been limited to statements of what was found in it. The great progress man has made in mastering his own fate has resulted from his ability to capitalize on past experiences. For example, study of earthquakes has given a way of prospecting for oil, study of heredity in plants has shown how to grow better crops, and study of the atmosphere has taught us to predict weather. The term "applied science" is often misused to refer to the outer ring of technologies. The latter are not sciences at all, though they depend on the sciences for the basic principles which guide their operations. The confusion arises from the intimate connection between basic information about the physical world and its practical applications. Science is systematic knowledge; it is the description and understanding of the universe in which we live, regardless of whether or not this knowledge has practical value. Technology is the use of this knowledge to benefit mankind. The classification described above is two-dimensional only. Physical science cannot be properly comprehended unless we relate it to the less tangible activities of man. The social sciences connect to those shown in the chart through geography and psychology. Geography takes all of science and technology and relates them to man. Psychology describes man's reactions to the stimuli of his encounters with different aspects of the physical world and with his fellows. In the chapters which follow, the different methods by which the geophysicist seeks information on the earth's interior will be outlined. In the last few decades, some of these methods have been highly developed in the search for petroleum and ore deposits. The special technological applications of geophysics to prospecting are the subject of numerous excellent texts (for example, Dobrin, 1952; Heiland, 1940). This work is a science text. It will concern itself with the broader problems of earth science and will leave the practical application of the methods described to the geophysical engineer. Every earth scientist, especially the geologist, should be familiar with the various ways in which geophysics can help him understand the earth. This book is intended to show the potentialities and limitations of physical measurements made at or near the earth's surface as means of learning about the earth's hidden interior. The principal types of measurements which can be made will be outlined, and the significance of important data so far obtained will be discussed. mediana minera or architeaud ### CHAPTER 2 #### ORIGIN OF THE EARTH It is appropriate that a book dealing with the earth should start with how it came into being. One of the clearest lessons of geology is that everything we see is transient. Mountains are raised and worn away; great seas come and go. In the pages which follow, it will be shown that the features of the interior of the earth are no more permanent than its superficial appearance. What we observe today must be the result of what happened yesterday, and that, in turn, follows from earlier events, and so on as far back in time as one can go. There is no true beginning to this history of change. Matter, either as mass or as energy, appears to be indestructible; so the rock, water, and air which make up the earth must always have existed in one form or another. When we refer to the origin of the earth, what we mean is not the creation of the matter of which it is composed, but the appearance of this matter as a single body which has had an individual existence from the time of its appearance to the present. The omnipresence of change makes it certain that at some time the earth must have been very different from what it is now. There is a definite limit to the time that the earth can have existed in its present form. This is set by the changing proportions of the elements involved in radioactive disintegration (see Chap. 4). The fact that radioactive atoms exist at all on the earth today and have not completely disintegrated into more stable substances proves that the matter of which the earth is composed must once have been in a very different environment. The only place known where conditions may be right for the formation of the unstable elements is in the center of hot, dense stars. At some time, at least a part of the material from which the earth was formed must have been drawn from such a source. Since then great changes have taken place. The questions thus arise, what form could the material which today makes up the earth have had just before reaching its present general arrangement, and through what orderly transformation was the present condition reached? 2.1 Means of Studying the Universe. To approach the problem of what existed before there was an earth, a good method is to examine the forms in which matter exists elsewhere in the universe today. Since we can as yet rise only a little way above the solid surface of our planet, we must depend on information which comes to us from outer space. Such Fig. 2.1 "Horsehead" nebula, a cloud of dark matter in Orion. (Courtesy of Mount Wilson and Palomar Observatories.) information consists of two types: particles which enter our atmosphere and electromagnetic radiations such as light rays. Most of the solid particles which strike the earth are evaporated by the heat generated by their passage through the air. Only in a few cases do some of the larger of these meteors reach the ground. They are found to consist of two principal types of material. The first of these is a stony substance composed largely of basic silicates such as are found in igneous