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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature,
even in specialized subfields. Any attempt to do more, and be broadly
educated with respect to a large domain of science, has the appearance of
tilting at windmills. Yet the synthesis of ideas drawn from different subjects
into new, powerful, general concepts is as valuable as ever, and the desire
to remain educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, which field we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.
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I. INTRODUCTION

The lifetime of an excited molecule fluorescing near an interface between
two media can be altered substantially owing to reflection and absorption at
the surface. The perfection of the fatty-acid monolayer assembly technique by
Kuhn and co-workers ' ~*led to a series of beautiful experiments by Drexhage
et al.,’> " in which the fluorescent lifetime of an excited molecule was meas-
ured near gold, silver, and copper surfaces. By the Langmuir-Blodgett
dipping technique,'!''? a number of layers of fatty acid were placed on a
metal surface, and a layer of dye molecules was then put on top of this
assembly. In this way the dye molecules were a known fixed distance from
the metal. The dye molecules were then excited and their fluorescence was
monitored. It was found that for large distances from the metal surface the
fluorescence lifetime oscillated as a function of distance, while for small
distances the lifetime went monotonically towards zero. The oscillations are
explained qualitatively as being due to the metal surface acting as a mirror
for the electric field of the emitter. The interference between the reflected
wave and the initial wave gives rise to the observed oscillations in the life-
time.>~#12 The decrease in the lifetime when the distance becomes small is
due to nonradiative transfer of energy from the excited molecule to the
metal.'*>** The nature of the states of the metal that accept this energy was
unclear until the analogy between these experiments and the problem of
radio-wave propagation near the surface of the earth became apparent.!3~ 15
The emitting molecule acts as an oscillating dipole (antenna) near a partially
absorbing and partially reflecting surface (earth). Sommerfeld!® provided
the first theoretical treatment of the radio problem in 1909 and pointed out
the possibility of a surface wave being present for the antenna close to the
earth. In the same way it has been shown that the surface-plasmon modes of
the metal dielectric interface are those that couple to the near field of the
emitting molecule.!”~'® These modes have become of interest in recent
years because of the experiments of Otto2° and Burstein,?! and the theoretical
work of Ritchie?? and others.2?

In the present article the classical theory of an oscillating charge distribu-
tion near a dielectric interface is applied to the problem of molecules fluoresc-
ing near a surface. The experiments of Drexhage et al.>~° are explained
quantitatively, and the connection between energy transfer and the surface
modes is stressed. In addition, the possibility of resonant coupling to the
surface plasmons is discussed for a variety of experimental situations.
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In Section II the theory of a dipole antenna near a metal surface is given in
detail and the terms in the decay-rate constant are separated into those due
to energy transfer and those due to “radiative” effects. Detailed comparisons
to the available experimental data are made. In Section III the dyadic
Green’s function method is used to derive damping rates for oscillating
charge distributions near a single interface and near multiple interfaces. This
method proves to be the most direct and elegant way to derive most of the
formulas. In Section IV the coupling of the emitting molecule to the surface-
plasmon modes of the metal/dielectric interface is discussed in detail for both
isotropic and anisotropic media. Both nonresonant and resonant coupling
are considered. Some experiments to test these predictions are suggested.

II. DIPOLE EMISSION NEAR INTERFACES
A. Theory for a Single Mirror

In this section we describe two methods for calculating the lifetime of an
emitting dipole near a single interface (mirror). The first involves the use of
Kuhn’s model,!? which requires the calculation of the reflected electric
field at the dipole position. The second is the energy flux method.!® Though
the two approaches are physically equivalent, the energy-flux method has
the advantage of allowing a rigorous separation of radiative and nonradiative
lifetime components.

Following Kuhn'? we first write the equation of motion of the dipole
(assumed to be a harmonically bound charge)

82
[H‘wzﬂ:; Eg—bopt (2.1)

where o is the oscillation frequency in the absence of all damping, m is the
effective mass of the dipole, Ep is the reflected field at the dipole position, and
b, is the damping constant (inverse lifetime) in the absence of the mirror.
The dipole moment u and the reflected field E oscillate at the same (complex)
frequency:

1=y e—i[w+Aw]t e—bt/z (22)
and
Eg=Eq e i@*aon g=bui2 (2.3)

where Aw and b are the frequency shift and the lifetime in the presence of the
mirror. The problem is then one of a driven harmonic oscillator where the
resonant external force is the reflected radiation field of the emitting dipole.

"Substituting into (2.1) and recognizing!® that b2 and the magnitude of
(€*/uom)E, are very small compared to w?, we have
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b* e?
and
2
2pom

The frequency shift is found to be quite small“ and so is unimportant for
the purposes of the discussion in this section. We return to Aw in Section IV.
We now introduce the quantum yield of emitting state, g=b,/b and the
classical formula for the radiative decay constant!?14

2 ek}
— (2.6)

= 3 maony

where n; is the refractive index of the medium containing the dipole and k is
the propagation constant (k, = wn,/c). Equation 2.5 can now be rewritten
in a more convenient form

2 - 3gn?
bo 2pok3
The problem is now reduced to that of calculating the reflected electric field
at the dipole position.

The geometry of the problem of the single mirror is shown in Fig. 1. The
two regions are half spaces with dielectric constants given as & =n? and
&, =n3% —k%+i2n,k,, where n, and k, are the real and imaginary parts of the
refractive index of region 2. The electric field at any point in region 1 can
be found as

b= Im (E,) 2.7

=L pam, + vy 8)

1 Dipole

4

Region | 4!" Il Dipole
L.
X

d
LU

////'/2 // / /

Fig. 1. Geometry for the single-mirror problem. Region 1 is a non-absorbing dielectric of
refractive index n, (¢, =n?). Region 2 is a half-space with no restrictions on the dielectric constant
except that it be isotropic.

€




MOLECULAR FLUORESCENCE AND ENERGY TRANSFER NEAR INTERFACES 5

where I, is the Hertz vector of region 1, which we now construct.

We first consider the dipole oriented perpendicular to the interface.
Following Sommerfeld!® we write the Hertz vectors in the two media as
follows (in cylindrical coordinates r, z, ¢):

H1=é,pk1f duJo(ur)lE(e—t“(’_a’-l-fl e~ h?) (2.9)
0 1
n2=é,ﬂk,J f e’ﬂJo(ur)lﬁdu (2.10)
0o 1
where d=k,d, l;= —ilej/e; —u*)* and Jo(ur) is the zeroth-order Bessel

function. The ﬁrst term in (2.9) is the source term for the dlpole we take the
minus sign in the region z>d and the plus sign in the region z <d, which is the
region of interest here for the reflected field calculation. The terms f, and f,
are to be determined by fitting the boundary conditions at z=0:

Elnl =£2n2 (2.11)
and
oll, oI,
T2 2.12
0z 0z (212)
On solving, we find
fi=—R"e ™ @.13)
&y Y —1,d
fa=—(1—=R")e™" (2.14)
&

where R" is the reflection coefficient for an incident ray polarized parallel to
the plane of incidence (p-polarized)®*:

i &1la—¢&3ly
Note that for the case of a perfect mirror (R" = —1), f; becomes e~ "4 and

gives the image term in Sommerfeld’s treatment.*® Substituting into (2.8)
and omitting the source term, we obtain the reflected field at the dipole
position as

N k? © »u3
Ezg=——u f R" e 214 gy (2.16)
& 0 I

Finally from (2.7), we have

R 3 © _u3
by=1—>gIm j R" e 24 __ gy (2.17)
2 0 ll
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We next consider the dipole oriented parallel to the x-axis and the interface
(Fig. 1). Again, following Sommerfeld we write the Hertz vectors as follows:

I, =é,uk, f (eThE Dy f, el lﬁ Jolur) du+é, uk, § J gre " J (ur)du
0 1 0
2.18)
and

I, =é,uk, J fa e”zJO(ur)—;—‘ du+é uk, ;J g, €= (ur)du (2.19)
0 1 0

The boundary conditions at z=0 are
oIy, oI, oI, oIy,

= 2.20
0z 0z Ox 0x (220)
anlx aan
& W—Sz 3z ° (221)
&Il =e,I1,,, (2.22)
and
£,T1,,=¢,11,,. (2.23)
On solving we find, again in agreement with Sommerfeld,'®
fi=Rted (2.24)
f2=Z—1(1 +RY)e i (2.25)
2
and
gi=(R' ~RYe™hd;  g,="g, 226)
2

where R* is the reflection coefficient for the incident ray polarized perpen-
dicular to the plane of incidence (s-polarized)

1, -1
Ri=1"2 2.27
Note again for a perfect reflector (R1=R"= —1), we are left in (2.8) with

source and image terms only, as expected.
On substituting into (2.8) and omitting the source term, we obtain

21,44 du

R_ 28 f [(1—u®)R"+R]e (2.28)
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and

bu=1+200m [T {0 R R MY )
1

(Equations 2.17 and 2.29 with some minor, but tedious, manipulation are in
agreement with our previous work and with that of Tews.!%)

Though we now have the theoretical description of the effect of a single
mirror on the lifetime, the mirror has significant effects both on the radiative
and nonradiative components of the lifetime—the latter being a result of
nonradiative energy transfer. The method that we now describe gives a
rigorous separation of these two effects. The geometry is the same as in Fig. 1,
except now we imagine a plane above the dipole (z>d) and a plane below the
dipole (0 <z <d). The total energy flux through these planes is now calcul-
ated. Since the planes are infinite in extent, this calculation accounts for all
the energy flowing away from the dipole by way of the radiation field. The
flux through each plane, Fl or F, is calculated by integrating the normal
component of the complex Poynting vector, S*, over the plane?®:

Fr,=Re f S*ndA (2.30)
Aty

where

S* =<i> E x H*
8n

H= —i(%) curl I

and E is given by (2.8). The Hertz vector I is given by (2.9) for the perpen-
dicular dipole and by (2.18) for the parallel dipole. We begin with a detailed
discussion of the perpendicular dipole. In that case we have

wo_ i[9 (01,\7]/ om1,
S*n 8ne, [Gr( 0z or 31)

Substituting from (2.9) for I1,, and integrating over the plane, we have for
F; (take minus sign in exponent of source term in II,):

_ el R iw ~liz-d) _ pr ,—liz+d)
Fo=klRe [ drrag [ [ feiend_gr ey
)

* 3 . 5 2
xu'?Jy(u'r) du'[e”""ED_R"* g7tz l;—* Jiwr)du  (2.32)
1

On changing the order and integrating over ¢, we have
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o -
1{] . 5 * -
FT= k3 2 Re fj__ e—t,(z—d)_Rllle—ll(z-fd)
2hul 4, [ ]
0

% [e—li“(z—.i)_Ru* e—f:(z+d)]
2 e

X u'2 l;—*du’ du j dr v J('r)J(ur) (2.33)
1 0

The last integral equals (v’ —u)/u’ and the integration over ¥’ can be done
to yield
@ . 3 . .
Fr=K3|u|* Re I ) Jemhemd _RY g-u+ )2 gy (2.34)
o \4e) It
After noting that the 1— oo portion of the integral is imaginary and carrying
out some minor manipulation, we divide by the total energy of the dipole
(3w*m|u|?/e?) to obtain b,

2e%k3 3 ! wdu 3 t ~uddu
- = 1__] _ 2y = =% - o -24Ld " "
by (3mwn§>[ 7 m fo (1—|R"?) I 2ImL R'e I
(2.35)

Note that the first term in parentheses is just b, from (2.6) and that for R" =0,
b=b,/2 as it should. Normalizing to the decay rate in the absence of mirror,
bo=»,/q, we have the final form:

34 3 1 -24,d
bf—q——qlmf R"|2)“ " ~3qIm jR"el—u3du (2.36)
1 1

A similar prescription may be followed to obtain b, (the only modifications
necessary are to change signs from minus to plus in the exponent of the source
term for Hl and to change the sign of S*)

n 3 © g3 d

bi=1 q Im f (1—|R"?) =2 d“ —Z4Im f R'e~md L2 (939
These results can be compared with our results from the earlier calculation
for b, of (2.17) according to the relation!®

E=bt+b1+(1 —q) (2.38)

where we have included the intrinsic nonradiative damping constant,
bn/bo=1—q. Equation 2.38 correctly reproduces (2.17) and the same is true
for the parallel dipole. We only give the results for the parallel case:
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A

3 1
bi=q—¢ qIm L du ﬁ [ —|RY?+(1 —u?X1 —|R"[*)]

1 -
+§ qIm f du 2 e~ 2ud [RY+(1—u?R"] (2.39)
4 o h
and

1
bimnatm [ au [0 —RYD -1 |RY)
0 1

+%qlm J dull[Rl+(1 —u?)R"] e~ 2hd (2.40)

We now have enough information to calculate an apparent quantum yield,
=by/b, which is the value that could be determined experlmentally by
measurlng the emission intensity integrated over the half space of region 1
in Fig. 1. We show in Fig. 2 the variation of g, with distance from a silver
mirror (optical constants taken for an emission wavelength of 612 nm).2¢
At large distances q, approaches a value less than 1.0 because of “trivial”
transfer to the silver mirror. '8 The dip in g, at d~1.7is caused by a dramatic
decrease in b+t in this region (see Refs. 2 and 27). We return to this point later
in this section. There are no experimental data for g, available at this time.
Both Kuhn’s model and the energy flux method give the effect of the
mirror on the lifetime of the dipole. However, with the energy flux method
we have separated and can now identify the individual terms. In (2.36), (2.37),
(2.39), and (2.40), the first integral expression is, in each case, directly related
to the transfer of energy to the mirror by way of the far field of the dipole
(“trivial” transfer). This is obvious from the behavior of these terms in a
number of limiting cases. For example, it is important to note that these
terms are independent of distance, so that for large d they are dominant in
the equations for b, Therefore, the transfer must be by way of the far field of
the dipole. We have verified this assignment by a direct calculation of the
absorption of photons from the far field of a dipole placed in front of the
mirror.!8
With the assignment of these distance-independent terms clear, we can
now write expressions for the radiative, b,, and nonradiative, b,,, decay-rate
constants in the presence of the mirror:
1 3
15,(L)=q—E gIm f R e-2ud 4 (2.41)
2 0 I
and
du

bo(L)=(1— q——qu f R'e -W“I 2.42)
1
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T T J '
Il DIPOLE
(J
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1.0 v ]
o _ — — — T T 7 JApparent Quantum Yield
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> /
/
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Fig. 2. Apparent quantum yield g, and normalized lifetime 1/b versus distance d (d = 2mn,d/)
from a silver mirror (n, =0.06 +i4.11) from (2.36 through 2.40). Results are shown for electric
dipoles oriented perpendicular to the interface and parallel to the interface. The quantum yield
of the emitting state, g, is taken to be unity here and in the figures to follow unless noted other-

wise.

Analogous expressions can be written, by inspection, for the parallel dipole.
Our results for b,(_1) and b,(|) are the same as those given previously by
Drexhage® ~® who used a method based on the far field of the dipole (the
interference method). This approach involves looking at the interference
between the primary ray exiting directly from the dipole and the reflected
ray from the mirror. The amplitude that results is converted to intensity and
integrated over all angles 8. After normalizing to the result in the absence of
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the mirror and changing variables so that u=sin 6, we obtain (2.36) in the
perpendicular case, and by neglecting d independent terms we get (2.41) as
before. The same is true for the parallel case, as well as for more complicated
mirror configurations and for multipole emission, which are discussed later.
It is now clear that the interference method gives the effect of the mirror on the
radiative decay-rate constant of the emitter. Furthermore, the interference
method is a useful and sometimes convenient technique (see appendix,
Section II1.D) for obtaining the total decay-rate expression b, ,, since we
only need in that case to extend the integration to complex angles of incidence
(cos =010 io0 or u=1 to o).

Finally, the integral expression in (2.42) for b,,,( 1D gives the nonradiative
rate constant for energy transfer to the mirror. At small d, b,, is proportional
tod~3as expected from the dimensionality of the problem. We discuss the
small distance behavior in more detail later in this section and in Section I'V.

We now discuss briefly how our results compare to earlier approximate
theories.?” We showed earlier that Drexhage’s formulas are identical to ours
in the radiation zone limit (d large). Other approaches have used image

methods, assuming perfect reflection (R*=R"= —1). Taking this limit for
(2.17) and (2.29), we find
~ 1 i .
bi=1-3¢Im || ——— | 243
S [((2d)3 (2d)2>e ] 24
and
3 1 i 1 j
b =1 + I | pt2d ]
1 2q m{l:(ZdP (2d)2+(2d):]e } (244)

in agreement with other work—including quantum mechanical treatments
of the perfect mirror problem.!”-28:29

None of these approximate theories mentioned above takes energy trans-
fer into account. Kuhn'? modified the image theory in a manner that, for the
first time, reproduces some of the aspects of energy transfer—principally
that b varies as d~ 3 at small d. He inserted an amplitude and phase factor
into the perfect-mirror equations to obtain, for example, in the parallel case

SO Bt S S B Y
by=1+ 2q|R| Im {[(2&)3+(2J)2+(2J)]e ) (2.45)

where Re™ " is the reflection coefficient of the mirror at normal incidence,
that is, R" or R* at §=0 (u=0). For a perfect mirror |[R|=1 and d=1, so
that (2.44) and (2.45) agree in this limit. Equation 2.45 can be shown to be an
asymptotic limit of (2.29) for large d. The same is true for the perpendicular
dipole case.

In Fig. 3 we compare results from the exact classical theory,!#!'> Kuhn’s

id



