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PREFACE

In the last decade classical fields have become of great importance in theoreti-
cal physics. The reason for that is the realization by both physicists and
mathematicians that gauge fields are just the right mathematical tool for
describing particle physics as well as other branches of physics. As a conse-
quence, general relativity theory has become a center of attention from the
point of view of gauge fields.

The classical theory of fields is no longer a theory of electrodynamics and
gravitation as two separate topics which can be formally and technically put
together in one text. Rather, classical fields should include electrodynamics,
gauge fields, and gravitation, and the three fields should be presented with a
common physical and mathematical foundation. This book is the first text that
undertakes such a task in presenting classical fields.

The book is based on lectures given by the author in two graduate courses at
the Institute for Theoretical Physics at Stony Brook, New York, where he was
a Visiting Professor in 1977-1978, and at the Ben Gurion University there-
after. Approximately half of the material is on gravitation, and the other half
deals with classical gauge fields. More than half of the content is based on
material that has not yet appeared in other books.

The emphasis here is on the classical field theory aspect of the topic. Also,
only those topics of gauge field theory that blend naturally with gravitation are
included. These topics of gauge fields include the spinor formulation and the
classification of SU(2) gauge fields, as well as the null tetrad formulation of the
Yang-Mills field in the presence of gravitation (and, of course, in its absence).
Material found in the many available books on quantum field theory is not
included.

The book consists of ten chapters, which are divided into sections, usually
ending with problems, many of which are completely or partially solved.
Chapters 1 and 2 are devoted to the physical foundations of the theory of
gravitation and to the mathematical theory of the geometry of curved space-
times needed to describe the general theory of relativity and the other topics in
the remainder of the book.
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viii PREFACE

The gravitational field equations, their properties and generalizations, are
presented in Chapter 3. Here, the concepts of the Lie derivative, Killing
equation, null tetrad formulation of the Einstein field equations along with the
Newman-Penrose equations, and perturbation on gravitational background
are introduced. In Chapter 4 the Finstein field equations are solved for mass
systems. These include, in addition to the standard metrics, the Vaidya
radiating metric, the Tolman metric, and the Einstein—Rosen metric describing
cylindrical gravitational waves, which is of importance in constructing cosmo-
logical models. Chapter 5 is devoted to the general properties of the gravita-
tional field, including such topics as the weak gravitational field, experimental
verification of gravitational theory, gravitational radiation, the energy-
momentum pseudotensor, and gravitational bremsstrahlung.

Chapter 6 is devoted to the derivation of the equations of motion of
material bodies—including spinning particles— within the framework of gen-
eral relativity. This includes geodesic motion, the Einstein-Infeld~Hoffmann
post-Newtonian equation of motion and its Lagrangian formulation, and the
Papapetrou equations for a spinning particle and their applications to motion
in the Schwarzschild and Vaidya fields. In Chapter 7 the theory of axi-
symmetric exact solutions of the Einstein equations is given and, using the
Ernst potential method, the metrics of Kerr, Tomimatsu-Sato, NUT-Taub,
Demianski-Newman, and variable-mass Kerr are presented.

In Chapter 8 the spinor formulation of both the gravitational and the gauge
fields is given. Here we introduce two-component spinors, the electromagnetic
and the gravitational spinors. The SU(2) gauge field theory is subsequently
given. This is then followed by the gauge field spinors and their transformation
rules, the geometry of gauge fields, and the Euclidean gauge field spinors.

Chapter 9 is devoted to the classification of gauge fields. This problem is of
great importance in connection with the finding of exact solutions to the
Yang-Mills field equations, as experience has shown in general relativity
theory with respect to the Petrov classification.

In Chapter 10 the Einstein field equations are written in relation to other
gauge fields. Also, the Yang-Mills theory is formulated in null coordinates in
both the cases of the presence and the absence of gravitation. As is well known,
these methods have brought great insight into the theory of gravitation. The
chapter also includes the theory of differential geometrical analysis, fiber
bundles and their application to gauge fields and general relativity, magnetic
monopoles, null tetrad formulation of the Yang-Mills theory, and monopole
solution of the Yang-Mills equations.

The book can be used as a text for a one-year graduate course in theoretical
physics, as has been done by the author in the last four years. It can also be
used as a supplementary book to other texts in graduate courses in classical
field theory or mathematical physics. We hope that it can fili the gap of a
needed text on the subject, where classical fields are treated in a modern
approach different from available books. The reader will find other aspects of
gauge field theory in flat spacetime (Minkowskian and Euclidean) in the
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author’s other book Classical Fields: Electrodynamics and Gauge Theory, now
in preparation.

I am indebted to my colleagues and students at the Institute for Theoretical
Physics at Stony Brook and at Ben Gurion University. In particular, T am
indebted to Professors Chen Ning Yang and Max Dresden for their kind
hospitality and comments on the content of the book. I am also indebted to
Professor J. Ehlers for several suggestions, and to Professor S. Malin for
reading the manuscript and for the many suggestions he made. Finally, I am
indebted to Mrs. H. Schlowsky and Mrs. A. Rouse from SUNY. to Mrs. Deisa
Buranello from ICTP, to Mrs. Y. Ahuvia and Miss M. Jameson from BGU for
the excellent job of typing the manuscript, and to Mrs. S. Corrogosky for her
assistance.

MoSHE CARMELLI

Beer Sheva, Israel
June 1982
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1

THE GRAVITATIONAL
FIELD

In this chapter the basic and preliminary properties of the gravitational
phenomena are given. These are the prerelativistic properties which lay the
foundations of the theory of general relativity. The discussion starts with the
Newtonian theory of gravitation, along with other related topics, such as
Newton’s laws of motion. It then proceeds to the concepts of gravitational
and inertial forces and their mutual relationship. This is followed by a
discussion of the equality of the gravitational mass to the inertial mass,
along with the experimental verification of this important fact. The experi-
ment, known as the Edtods experiment, is subsequently examined in detail.
The chapter is concluded by discussing the principle of equivalence and the
principle of general covariance. These two principles were the basis for the
physical foundations in the original formulation of the theory of general
relativity by Einstein.

1.1 NEWTONIAN GRAVITATION

The Galilean Group

In

the classical mechanics of Newton we assume that the laws of motion do not

depend on the choice of a particular fixed system of coordinates with respect

to

measured. Furthermore, we assume that the laws of motion do not change their
forms by transferring from one system of coordinates into another. These
systems of coordinates are all assumed to have uniform, rectilinear, transla-
nal motions with respect to each other. They are called inertial systems of

tio

which the distances, velocities, accelerations, forces, and so on, are being

coordinates.



2 THE GRAVITATIONAL FIELD

Thus inertial systems of coordinates differ from one another by orthogonal
rotations, accompanied by translations of the origins of the systems, and by
motion in uniform velocities. We can further add the translation of the time
parameter, namely, the possibility of choosing the origin of time, ¢+ = 0, at will.
We may count the number of parameters, or the number of degrees of
freedom, which each coordinate system has with respect to any other one. Thus
we have four parameters which account for the translations of the three spatial
coordinates and time, three parameters describing the orthogonal rotations of
the spatial coordinates, and finally three more parameters accounting for the
rectilinear motions of the spatial coordinates. Newtonian laws of classical
mechanics are therefore invariant under all of these ten-parameter transforma-
tions of inertial systems of coordinates.

A transformation of inertial coordinates having ten parameters, as described
above, is called a Galilean transformation. Newton’s classical laws of mechanics
are invariant under the ten-parameter Galilean transformations. We say in this
case that we have a Galilean invariance. The aggregate of all Galilean transfor-
mations forms a group. This group is called the Galilean group and has ten
parameters.

If we choose two inertial coordinate systems so that their corresponding
axes are parallel and coincide at = 0, and if v is the velocity of one inertial
coordinate system with respect to the other, the Galilean transformation can
then be reduced into a simple transformation as follows:

x'=x+tos,  y=ytor, ’=z+or (1.1.1)

Here v,, v,, and v, are the components of velocity v along the x axis, y axis,
and z axis, respectively.

Newtonian Mechanics

The Newtonian laws of mechanics are based on three fundamental laws. Thesc
laws can be stated as follows:

1 A particle acted upon by no force will assume a rectilinear motion with a
constant velocity.

2 A particle acted upon by a force f will move with an acceleration a
which is proportional to the force. We can then write the relation
between the force and the acceleration in the form of Newton’s familiar
law of motion:

f = ma, ‘ (1.1.2)

where m is the mass of the particle.

3 For each action there is a reaction which is equal to the action. but is
directed tn the opposite direction of the action.
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We conclude these brief remarks on Newtonian mechanics by mentioning
the concept of action-at-a-distance which the Newtonian theory assumes.
Roughly speaking, action-at-a-distance means that interactions between par-
ticles take place instantly. This is in contrast to modern physics concepts where
we assume that interactions are mediated through intermediate particles, thus
leading to the concept of fields.

Newton’s Theory of Gravitation

Newton’s theory of gravitation is actually a three-dimensional field theory. The
gravitational field is assumed to be described by a scalar field ¢(x, y, z), which
is a function of the spatial coordinates. The function ¢(x, y, z) satisfies a
second-order partial differential equation of the form

Vi(x, v, z) = 47Gp(x, y, z). (1.1.3)

Such an equation is called the Poisson equation. Here G is Newton’s gravita-
tional constant, whose value is equal to 6.67 X 107 * cm’ - g~ ' - s72 in CGS
units, and p(x, y, z) is the mass density of the matter in space producing the
gravitational field. The differential operator v? is given by

T

2.
Vi=—+—+— 1.1.4

ax2  9y?  9:? ( )
and is called the Laplacian operator.

A solution of the Poisson equation gives the potential ¢(x, v, z) in terms of
the mass distribution p(x, y, z) in space. At points where there is no matter,
that is, at points of space where p(x, y, z) = 0, we can solve the equation

vi(x, y,z) = 0. (1.1.5)

The latter equation is called the Laplace equation. Its solution then describes
the Newtonian potential at points of space where the mass density p vanishes.

The Newtonian potential ¢ creates a force field that acts on particles. This
gravitational field of forces is proportional to the negative of the gradient of
potential ¢. Hence the force acting on a particle with mass m, located in a
Newtonian potential ¢, is given by

F=—mve, (1.1.6)

]

NERERY.
V—-(‘a‘;,g;,a). (1.1.7)

where V¥ is the three-dimensional gradient operator

For instance, if the potential ¢ is produced by a single mass M, then the
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solution of the Poisson equation yields

¢:—§ﬂ, (1.1.8)

-
and the force acting on another particle with mass m will be

F=GmMyL=_mM
r r2

(1.1.9)

Equation (1.1.9) is the familiar inverse-square law of interaction of Newton.

The masses m and M appearing in Eq. (1.1.9) are the gravitational masses,
since they give the gravitational attraction force between the two particles. The
mass appearing in Newton’s second law, Eq. (1.1.2), on the other hand, is the
inertial mass of the particle. In Newtonian physics these two concepts are
identified. In the sequel we will find that this identification is valid in general
relativity theory, too.

Finally the potential energy for an arbitrary mass distribution in the New-
tonian theory can be found. The potential energy of a particle in a gravita-
tional field is equal to its mass times the potential of the field. Hence we obtain
for the potential energy of a general system, with mass density p, the following
expression:

1
U:Equ;d%c. (1.1.10)

In the next section we discuss more thoroughly the basic properties of the
gravitational field. This is done from a more general point of view and not
necessarily that of Newtonian physics.

PROBLEMS

1.1.1 Find the Newtonian potential produced by a system of masses at
distances that are large compared to the dimensions of the system.

Solution: The Newtonian potential is the solution of the Poisson equation

Vio(x) = 4nGp(x), (1)

where p(x) is the mass density of the system, and G is Newton’s gravitational
constant. In Eq. (1) the variable x denotes the three spatial coordinates x, y, z.
The solution of Eq. (1) is given by

o(x) = —Gf%_%d%c’, (2)

where r = (x', x2, x%) is the radius vector of the point where the potential is



