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PREFACE

* When instruction in aeronautical engineering was begun at the Massachusetts
Institute of Technology forty years ago, the phase of the subject developed most
fully from a rational viewpoint was the theory of dynamie stability. This theory
of the disturbed motion of a rigid body basically in equilibrium between aero-
dynamie forces and the body’s weight proved to be difficult to grasp for the
students who had not before encountered a system with so many degrees of
freedom subject to such complex influences from its surroundings. A course to
bridge the gap between the mathematics and mechanics the students already
knew and the problems now awaiting them was therefore added to the currieulum.
From a brief review of particle dynamics and vibration theory, the course
branched into its two main divisions of fluid dynamics and rigid dynamics, and
then joined these subjects in the analysis of airplane motion. Professor E. B.
Wilson, who had charge of the course, described it in his Aeronautics (John Wiley
& Sons, New York, 1920).

The present work retains the fundamental plan of Professor Wilson’s. It recog-
nizes, however, that aeronautical engineering today faces dynamical problems
of greatly increased variety and complication, and that an Introduction to Aero-
nautical Dynamics thus must seek to give the student a broader and even deeper
grounding in dynamical principles than had been needed in the past. As every
teacher knows, the very bottom layer of such a grounding, next to the scraped
bedrock of basic concepts and elementary formulations of ideas, is the most
difficult one to lay properly. A painstaking special attention to this fundamental
task will, accordingly, be found throughout the book. ‘And, where the discussion
climbs to higher levels of the subject, it is dominated by the view that formulas
count less than the understanding gained in.their derivation. To stimulate and
hold the interest of the practically minded student, illustrative applications of
general results established are shown all along in realistic detail. The Problems
at the ends of the Chapters add further to the range of these applications and
carry them next to the stage of engineering utility.

A difficulty with any comprehensive and at the same time detailed treatise
is that its maze of details tends to hide the main lines of the subject. I have
tried to help the student to keep these main lines in view by indicating to him
the natural logic that leads one on, step by step, in the development of an idea.
By thus arraying the beads of detail on the strings of coordinating thought,
I hope to have achieved a clearly differentiated picture of the many-sided subject
even for the student who is entirely on his own. Ideally, however, the reading
of the book as a text ought to be paralleled by classroom discussion in which
the teacher sets forth the broad perspectives of the things being studied.

m
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The arrangement of the subject matter in the book corresponds to the sequence
in which the various topics are taken up in the classes at the Massachusetts
Institute of Technology. There, the course covered by this text now starts at
the beginning of the Junior year, as the first subject with an aeronautical title.
‘Working up from particle dynamics through fluid dynamics, the student comes-
to airfoil theory just at the time he can use that theory to coordinate experi-
 mental data as, in the second semester, the theoretical course gets supplemented
_by a companion course in Applied Aerodynamics. The tie-in thus provided

between theory and practice is good for both. By the end of the semester, after
" the theory has proceeded further through rigid dynamics and vibration analysis,

and the applied course has covered general aerodynamic data, including those
on the performance of engines, the student is prepared all round for the study
of aircraft stability, to which he turns at the beginning of his Senior year.

Although many of the things discussed in the introductory courses have no direct

connection with the stability problem, this problem, in the end, thus still is the

one in which the different branches of theoretical and applied aeronautical dy-
namics find their crowning connection.

Because the Chapters on Particles, Rigid Bodies, and Vibrations represent
about one half of the book, it would readily be possible to use them for a course -
rounded out in Solid Dynamics alone, and the remaining Chapters for a course
of similar length in Flaid Dynamics alone. The coverage of both of the courses
by one text would even then provide for helpful cross-references—as between the
uses of complex variables in Chapters VII and XIII, or those of Fourier series
in Chapters IX and XIII. And though the labels “solid” and “fluid” would tend
to accentuate the dissimilarity rather than the similarity of the subjects of the
two courses, the uniformity of the subjects’ treatment should help to keep some
measure of their natural coherence between them.

During the twenty-some years it.has been in the writing, the book was issued
piecemeal, in the formi of mimeographed notes, to students taking the subject.
Its various parts thus have, in a sense, been published for some time. The
Sections dealing with the fundamental mechanics of variable mass, for example,
date back to the earliest thirties; and the material on air-fed rockets was prepared,
still with an element of prophecy, in the middle forties. In the final editing of
the book, I have endeavored to smooth out. the unevennesses in the treatments
of the different parts, and to remove such marks of time as I could see here
and there. Still, I am aware that in some respects the book is not as complete
as it might be. Particularly noticeable is the absence of discussions of com-
pressible flows in more than one dimension, of thin airfoils as surfaces of discon-
tinuity, under unsteady as well as under steady conditions, of three-dimensional
flow problems, and of servomechanisms. My failure to include these topics is
due to a lack of time so far to write them up. Perhaps, if the book in the form
it now has finds a sufficiently favorable reception, there will be an opportunity
‘to fill the gaps in a second edition a few years hence I shall be grateful to
colleagues and students for all suggestions of possnble 1mptovements in the work.

A question I expect to be asked more than once is: How can a work like the °
present one afford to pass up the use of formal vector analysis? I agree that
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vector notation, like schemes of shorthand generally, will simplify, and perhaps
clarify, a discussion for someone really familiar with the notation’s meaning.
Few of the Engineering Juniors for whom primarily this book is written, however,
possess such a real familiarity with vector operations. To remain on dependably
firm ground, I have therefore drawn on nothing but the most elementary geo-
metrical sense to examiné one after another of the vector problems encountered
in the different parts of the book. When he is through with the book, the student
has had a close view of vector changes illuminated from a variety of angles;
he has seen scalar and vector products of pairs of vectors worked out on the basis
of one set of pictures in Particle Dynamics (Work, Moment), and of another
set of pictures in Fluid Mechanics (Stream Function, Velocity Potential); and
he has been led to Gauss’ and Stokes’ Theorems by way of the concepts of Yield
(divergence) and Emanation, here newly named, and of Vorticity (curl or rota-
tion) and Circulation, Thus strengthened in his acquaintance with basic vector
manipulations, he should then turn to his general vector analysis and discover
in retrospect how much of dynamics can actually be simplified by its use.

Some criticism may be directed at the omission of Lagrange’s Equations from
the discussion of general dynamics, and of the Navier-Stokes Equations from
the treatment of viscous fluids. These Equations had actually been considered
for inelusion. They were finally left out because they would have represented
little more than bald bridgeheads pointing into fields outside the scope of the
present work. I see their logical place at the beginning of higher-level texts
in which they. are then also put to extensive illustrative use.

An oddity I recognize as such is Chapter V. In contrast to the rest of the
book, which labors to bring out as vividly and straightforwardly as possible the
concrete sense of every idea, this Chapter, in its presentation of the Stream
Function, deliberately disregards the possibility of a direct physical approach
to the Function, and leads to it in a roundabout mathematical way instead. This
procedure has grown out of the experience that the Stream Function, with its
associated concepts entering into Gauss’ Theorem, is quickly understood and
accepted by the student, whereas the companion function, the Velocity Potential,
and the related concepts underlying Stokes’ Theorem, lack all natural appeal
and tend to remain unfamiliar and unappreciated. The plan adopted is to arrange
the development of the Stream Function in steps corresponding exactly to those
in the subsequent development of the Velocity Potential, so as to provide a con-
tinual parallelism between two evolutions of which the first, supported by solid
commonsense at every turn, then helps to pull through the second, which hangs
precariously on abstract logic. In short, the self-propelling group of ideas about
the Stream Function is harnessed as a tractor for the dragging group about the
Velocity Potential. Anyone who doubts the worth of the scheme should try it
before he laughs it off.

As I have already stated, the inspiration for the book goes back to Professor
E. B. Wilson. My indebtedness to other authors, and to my own professors,
colleagues, and students, is great, but difficult to detail. Among the authors,
H. Glauert and E. H. Barton, both listed as references at the end of the book,
deserve to be singled out for mention: the reader familiar with Glauert will
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detect his strong influence in portions of Chapters VI, VIII, and IX, while Barton’s
lead can be traced clearly through parts of Chapters XI and XII. To Professor
A. Betz of Goettingen belongs the eredit for the simple approach to Biot-Savart’s
Law presented in Section 9.3. Professor C. L. E. Moore, who led the recitation
course based on the Wilson text when I took it thirty years ago, was the patron
of my subsequent teaching of the course, and so ultimately of this book. I
acknowledge my debt to him in deepest thankfulness. 1 want to thank also
Professors E. P. Warner, C. F. Tayler, and J. C. Hunsaker, who, as successive
Heads of the Department of Aeronautical Engineering at the Massachusetts
Institute of Technology in my time, encouraged and supported my work. With
gratitude I would further mention the ever benevolent interest of Professor R. H.
Smith, for many years my superior as Executive Officer of the Department. My
young colleagues and successors, Professors Holt Ashley and R. L. Halfman, both
helped to speed the completion of the book toward the end of my stay at the
_Institute. The relentless, friendly pushing of Professor Ashley in particular was
what really got the manuscript finished and put into the hands of the publishers.
I cannot thank him enough for his faithful devotion to the cause. The Figures
are mostly the work of Mr. Leonard Glancy. I appreciate the love and skill
with which he did them. For the typing of the manuscript and the handling
of various chores in its assembly, I am indebted especially to Miss Dorothy
- Howe and Miss Rose Marie Pratt, and to Mr. G. P. Haviland. Many others,
not identified here by name, have given me valuable assistance and are assured
of my gratitude. Among them, I would especially mention - my students, whose
eyeopening reactions, both sharp and obtuse, are responsible in large measure
for the way in which I am now presenting Aeronautical. Dynamics to a wider
circle of young engineers.

o ManrRED RAUSCHER.
Ziirich, July 6, 1968.
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PRELIMINARY
NEWTON’S LAW AND THE CONSERVATION OF MATTER

0-1. Dynamics. Dynamics deals with the forces involved in the movements of
bodies. The emphasis of the word lies simply on force (Greek: dvvauis). An alterna-
tive term for dynamics, emphasizing more the part of movement (Greek: xivnous),
is Kinetics. Movement dissociated from all considerations of force is the concern of
the subsidiary science of Kinematics.

0-2. Newton’s Law. The basis of dynamics is Newton’s Law: “A force produces
momentum in the direction of the force, and at a rate proportional to the force.”

Momentum, or ‘“‘quantity of motion”, is defined as the product of mass (quantity
of matter, m) and velocity (rate of displacement, v). Thus, in mathematical terms,
if F signifies the force, £ the time, and s the displacement,

F "":‘:2 (mv), (1%
or
d d( ds
reigm=ig(ng)
k denoting a constant. . The Equation simplifies into
dv d%s
F=kn— =km—
dt ds
when the mass of the body is constant, and further into
dv d®s

if the units of F, m, s, and ¢ are so chosen that a unit force acting on a body of unit
mass produces unit acceleration (rate of change of velocity).

0-3. Units. The relation between the various units implied in the last equation
may be determined from the acceleration imparted to & given mass by a specific
force. The force most conveniently used is the force of gravity—the weight. Thus,
if m’s acceleration under its weight W is g,

W =mg, or m=z.

)
Now, the meaning of W is ‘“‘number of units of force” making up the weight of the
body; and m stands for “number of units of mass” contained in the body. The
Equation thus shows that the number of weight units for any body must be g times
1 5
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the number of mass units—so that, numerically, the weight of the body is g times

the body’s mass, or the mass 1 /g times the body’s weight.

- The established unit of weight is the pound (Ib); and accelerations are expressed
in terms of the standard units of length and time, feet (ft) and second (sec), as foet

per second per second. The unit of mass that fits into this “Foot-Pound-Second

System” is the slug (sl). With g = 32.2 ft/sec?, a slug is represented by an amount of

matter weighing 32.2 Ib. "

0-4. Mass and Force. The definition of mass as “quantity of matter” is the one.
offered by Newton. 'Through it, force becomes a derived quantity: namely, that
which is capable of chariging the velocity of mass. From the poinit of view of the
engineer, force is perhaps nearer to being a fundamental concept than mass, as it
corresponds directly to one’s sense of muscular exertion—in the stretching of a spring, -
or the lifting of & weight—while mass is noted but indirectly in the sluggishness, or
inertis, with which physical objects respond to the action of forces. Seen from this
angle, mass is then simply the factor connecting force and acceleration—its numerical
value for any given body being the ratio between the magnitudes of those quantities:

0-5. The Conservation of Matter. Intimately associated with Newton’s Law is the
fundamental axiom’ of the Conservation of Matter. This principle roots so directly
in elementary physical sense that allowance for it tends to be made unconsciously,
and so without explicit mention, Formal recognition of the continued existence of
all matter becomes, howevp;', necessary in the application of Newton’s Law to bodies
of variable mass. Any mass gained or lost by a body must be understood always to be
. 80 much matter picked up or dropped—never matter created or destroyed—and the
term “quantity of motion” in Newton’s Law must accordingly be understood to
include not only the momentum of the body proper, but also the momenta of any
acquired or discarded masses before and after their attachment to the body. Also, in
the study of the flow of fluids, the knowledge that matter cannot appear or disappear
is the basic means of correlating the movements of the individual mass elements in an
aggregate whose different portions merge into each other without visible demarcation.
The Conservation of Matter thus is s principle that continually supplements Newton’s
Law in the shaping of mechanical events, ’



CHAPTER1I
KINEMATICS OF A POINT

1-1. Displacement, Velocity, and Acceleration. Path and Hodograph. Before it is
possible to proceed to the calculation of the forces involved in the motions of bodies,
methods must be developed to deal with motion as such. This requires a general
study of displacements, velocities, and accelerations.

Displacements in space are characterized by magnitude, direction, and sense.
They can be compounded and resolved according to the parallelogram rule, and by
this property are defined as vectors. _ _

From the fact'that displacements are vectors, it follows that velocities are vectors
also. To see this, consider two velocities v, and v,, affecting the same point. In a time
di the point is displaced a distance ds, = v, d¢ '
in the direction of v, and a distance ds, = v, d¢

—~——
——
——
—

in the direction of v,. As these displacements /:'_ N

may be combined by the parallelogram law, ’ el
the resultant displacement ds; comes out 4

just the same as if v, and v, had been % Sy

replaced by their vector sum v,
place (Fig. 1.1).

Similarly, it can be seen that accelerations combine by the parallelogram rule and
hence are vectors: the resultant effect of two accelerations a, and a, in a time df,
being the vector sum of two velocities a, df and a, dt, is exactly that corresponding to
a single acceleration a; obtained by vectorial addition of a, and a,.

Infinitesimal changes in the displacement and velocity vectors from instant to
instant are the basic elements with which the study of an evolving motion is concerned.

‘The successive elementary displacements » d¢ during successive elementary intervals
dt, added together in sequence, yield the path along which the motion proceeds from
an initial displacement s,. As @ach arc v d¢ has the direction of the instantaneous
velocity v that earries a point along the are, the velocity vector is everywhere tangent
to the path. The velocity is, then, fixed by this direction and by its magnitude,
which is the rate at which the point advances. along the path, or, in other words,
moves along the locus of the heads of the successive displacement vectors s laid off
from a-common origin.

For a study of the changes in the velocity vectors between successive instants, and
hence a determination of the accelerations involved in the motion, it is helpful
to construct a supplementary diagram in which the successive velocity vectors are
brought back to a common base point for comparison with each other (Fig. 1.2).
Each of these vectors evolves from its predecessor through the accretion, during an
interval d¢, of an elementary vector a di pointing in the direction of the momentary
acceleration a. Setting out from the head of the initisl velocity vector v,, the velocity

3

in the first g, 1.1, Vector composition of velocities.
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vector head, carried along by the successive changes, thus traces a curve called the
hodograph (Greek: 606s = way) of the motion. The advance of the vector head along
this curve is always in the direction of the instantaneous acceleration a, as already
noted, and proceeds at the rate (a df)/dt = a. The velocity of the velocity vector head
along the hodograph thus represents, in both magnitude and direction, the acceleration
-of the motion from instant to instant.

@ )
¥1e. 1.2. Hodographs showing: (a) Velocities, and (b) Accelerations.

In the study of diagrams like the ones just discussed, and of vector problems
generally, it often proves convenient to view a vector change as a combination of
two basic types of changes—namely, a stretching or contracting of the vector in the
direction in which the vector is pointing at the instant, and a swinging around of the
head of the vector with respect to the vector’s tail in & direction perpendicular to the
vector (Fig. 1.3). When, for example the head of a displacement vector s is moving
along at a velocity v, this velocity.can be resolved into components v, and v,. The
first of these components goes into stretching the vector at the rate »,. The second

Y
\ / Up
) Ua
r |
r Ubl r
(a) ®)

Fra. 1.3. Velocity vector diagram showing: (a) Positions of velocity components
v, and v, and (b) Effect of v, on angular motion of r.

component, carrying the vector head sidewise at the rate v,, swings the vector around
at the angular rate v,/r, where r is the magnitude of s. The effect of v, is seen to be
independent of v,, and the effect of v, independent of v,; i.e., the stretching or con-
tracting and the swinging around of the vector contribute nothing to each other, and
8o can be taken into account separately, and their effects simply added. This possi-
bility of considering any vector change as the sum of two simple basic changes
enables one to visualize what goes on in many situations that would otherwise be
difficult to see through.
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1-2. Reference Systems. The motion of a body is completely determined if the
positions of all the points of the body are known at every instant. To define these
positions, it is necessary to establish a base point, or origin, from which displacements
can be measured, and a set of reference directions, or axes, with respect to which it is
possible to judge the displacements’ orientations. The analysis is then carried through
most conveniently by a resolution of the displacements, velocities, and accelerations

R

(@) (®)

Fi1e. 1.4. Vector Projection: (a) Sum of projections of components = Projection of resultant,
(b) Projection of change = Change in projection.

into components in the coordinate directions at every point. Three such directions
will generally be needed. ,
Vector resolution becomes simple orthogonal projection when the coordinate
directions are mutually perpendicular, as they will be taken to be throughout this
work. Because the projection of a vector on any axis is equal to the sum of the
projections of the components of the vector on that axis (Fig. 1.4a), the velocity
component in any direction can be found as the sum of the projections of the vector
rates of change of the component displacements, and the acceleration component in
any direction can be found as the suri of the projections of the vector rates of change
of the component velocities. Part of the same observation is that the projection

of the change in a vector on any axis is equal Y vy + duy

to the change in the projection of the vector vy + dog

on that axis (Fig. 1.4b). These basic facts will v \’—»wﬁdv,
be utilized in the determination of the velocities ‘ 34 Ay
and accelerations in various reference systems R

in the following Sections. P X
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1-3. Cartesian Coordinates. In the Cartesian / x4+ Ax

system of coordinates, a point is determined by 4/
three lengths—the components in the coordinate F1e. 1.5. Cartesian coordinates: Velo-
directions of the displacement vector from the ©°ity components of a point at two
origin to the point. The axes of the reference frame instants df apert.

are normally labeled X, Y, Z, and the coordinates of any point in the frame are corres-
pondingly denoted by z, y, z (Fig. 1.5). The velocity components in the coordinate
directions will be designated v,, v,, v,, and the acceleration components a,, a,, a,.




8 KINEMATICS OF A POINT ' [CH. I

If, in a time d, a point moves from s position P (2, y, z) to & position P(z + dz,
¥ + dy, z 4 dz) nearby, its velocities parallel to the three axes are

o Change, in time d, in projection of resultant displacement vector upon OX

x

) dt

_(+dr)—2 i
o dt

dx
Cdt’

and + (1.1)
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F16.1.6. Cartesian coordinates: Right-handed systems used in: (a) Mechanics, and
®) Aeronautics. i

Also, with v, vy, v, changing into v, 4 db,, vy + dv,, v, + dv, between one instant
and the next, the accelerations in the three coordinate directions are

Change, in time d¥, in projection of resultant velocity vector upon 0X
a, = = 5

&

da 1

(vz + dvx) = vﬂ

et
dv, d?x
=@

and - + (1.2)
dv, d%
“=E =
dv, d*
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