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Preface

The object of this textbook is to present the central principles of
the quantum theory of solids to theoretical physicists generally and to
those experimental solid state physicists who have had a one year
course in quantum mechanics. The book is intended for use in a one
year graduate course, to follow a year of general education in the facts
of solid state physics at the level at least of my earlier book Introduc-
tion to Solid State Physics, ‘second edition. Much of the physical
background to the theory is developed there, and it is hoped in the
next edition to develop the physical interpretation up to the level
needed here. '

As far as possible I have tried to emphasize unifying principles. The
first part of the book treats phonon, magnon, and electron fields and
their interactions, culminating in the theory of superconductivity.
The second part treats fermi surfaces and electron wavefunctions in
metals, alloys, semiconductors, and insulators, with considerable at-
tention to the theory of the important types of experiments which
‘bear on our understanding. The third part deals with correlation
functions and their application to time-dependent effects in solids,
with a brief introduction to Green’s functions. The order of the
chapters, particularly within the second part, is not rigorously linear
—1 attempted to avoid an accumulation of material which did not
challenge the imagination and participation of the reader. The first
. part of the book forms by itself a short course which has been
observed to interest students of field theory and particle physics.

A number of important theoretical calculations in solid state physics
are too long, intricate, fearsome, or tedious to present in full in a
course; and a summary treatment often has no pedagogical value. To
give several examples, the full theory of Bloch electrons in a magnetic
field, by Blount, Roth, Wannier, Kohn, and others, has been omitted,
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vi ) PREFACE

although a less complete treatment is included. Equally, the work of
Soviet physicists and Luttinger on the Landau theory of the fermi gas
is clearly beyond the scope of the book, together with a number of
other many-body problems. The subject of the properties of para-
magnetic ions in various environments appears to me to be too
specialized for a general text. While writing it became abundantly
clear that there is no level at which a textbook like this could aim to
- be a complete treatment of all major aspects of the theory of solids;
the field is simply too vast. It is natural not to report several detailed
subjects which are available in existing texts—thus the material on
standard transport theory in the books by A. H. Wilson and J. Ziman
is not repeated here; the discussion in Peierls of phonon interactions’
and the book by Abragam on nuclear magnetism are treatments so
-complete that it would be ridiculous to paraphrase them: I renounced
an attempt to do everything by the method of Green’s functions, for
then the contents would be almost entirely inaccessible to experi-
mentalists at the present time. Given an opportunity, many students
will choose to write a term paper on an application of Green's
functions to a many-body problem. The quantum theory of transport
“processes is not treated here. Fortunately, for many subjects excellent
monographs exist, particularly in the monumental series Solid State
Physics—Advances in Research and Applications, edited by F. Seitz
and D. Turnbull, and in the Encyclopedia of Physics—Handbuch der
Physik series. Details far beyond the scope of this text can be found in
these and other specialized works.
This book contains problems and is a textbook; it is not a history of
the development of ‘the subject. I have actively tried as a matter of
policy to avoid proper names, assignment of priority, and allocation
of credit. Detailed references and names are given only when it would
"beé positively clumsy to omit them, or when the work is too recent to
have been included in reviews. An adequate bibliography would be as
long as the text itself. Many lists of references are readily available in
the Advances and in the Handbuch series. It is increasingly clear that
‘many active research workers cannot find time both to write a text
‘and to give full historical credit to all their colleagues responsible for
the development of a large subject.
A number of very important results are developed in the problems
to be found at the end of most chapters. It is urgently recommended
that the problems be read over in conjunction with the text, and it
would be vastly better for the reader to solve the problems.
- A note on notatlon [,]= commutator; {,} = anticommutator; the
symbols ¢, c* are usually reserved for fermion operators. The units
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h =1 are employed throughout, but # is sometimes restored .to the
final result. A Bloch function of wavevector k is written as [k). When
convenient the volume  of the specimen is set equal to unity; N
usually refers to the total number of particles and n to their con-
centration. The symbol ¥ usually denotes a field operator, and @
usually denotes a state vector.

1t is a pleasant duty to acknowledge here in part the wide assis-
tance I have received. M. H. Cohen, W. A. Harrison,. W. Kohn, H.
Suhl, J. Friedel, A. Blandin, P. Argyres, B. Cooper, S. Silverstein, B.
Dreyfus, J. W. Halley, G. Mahan, D. Mills, and F. Sheard have
helpfully suggested improved treatments of various demonstrations.
My colleague, J. Hopfield, alertly resolved innumerable apparent
paradoxes which appeared during the writing. At Stanford, M. S.
Sparks and his associates, including R. M. White, R. Adler, K.
Nordtvedt, K. Motozuki, and 1. Ortenberger, detected many lapses in
the early versions of the manuscript. R. Peierls graciously agreed to
share the title of his most useful book. The typing was done with
perfection by Mrs. Eleanor Thornhill, without whose help few physics
books would be written in Berkeley; Mrs. Sue Limoli kindly assisted
with the proofs.

C. KITTEL
August 1963



Preface to the Second Revised Printing

The original preface suggested that “A number of very important
results are developed in the problems... .” Experience has shown that
the problem solutions can be really useful both for self-study and as a
supplement to-lectures. Indeed, many of the results are too important
to be left to the chance that the reader will take time off to work
them out. It is fortunate that Professor C. Y. Fong offered to prepare
an appendix giving the solutions to selected problems. He also made a
number of typographic and algebraic corrections in the text itseif.
Thus the revised edition is defined by the original text, the solutions,
and the corrections.

) C. KITTEL
November 1986
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1 Mathematical introduction

It is convenient to gather togéther here a number of definitions
and results which are utilized throughout the text.

RECIPROCAL LATTICE

We recall several important properties of the reciprocal lattice.

The basis vectors a*, b*, ¢* of the reciprocal lattice are defined in
terms of the primitive basis vectors, &, b, ¢ of the direct lattice by
the equations
. _ o  DXcC - cxa axb
1) = = oxe b* 2abxc: _'zabxc
this definition includes a factor 2x which is not usually present in
the usual crystallographic definition followed by elementary texts.
In treating the interaction of waves with periodic lattices we con-
stantly encounter in the statements of wavevector conservation an
additive term which is 2x times the crystallographic reciprocal lattice
vector; thus we find it handy to include the 2 in the definition here.
Otherwise our notation here is standard; the use of the asterisk super-
seript in no way implies “‘complex conjugate.” All the basis vectors
are real. We note that a - a* = 2x; a - b* = {; ete.
By simple vector analysis it follows from (1) that

: (2x)°
where V7 is the volume of the primitive cell in the reciprocal lattice
-.and V.= a+b x ¢ is the volume of the primitive cell in the direct
lattice. We note that the conversion of wavevector sums to integrals
involves

@ Y- o ), f d%-(N/V*) / m

k

where the direct volume Q contains N pnrmtlve cells.
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THEOREM. The vector r*(hkl) to the point hkl of the reciprocal lattice
is normal to the (hkl) plane of the direct lattice.
Proof: Note that
1

1
78~ ib

is a vector in the (hkl) plane of the direct lattice, by definition of the
lattice indices. But

1 1 1 1

L IO Sl Oy _ » * y. [ g - =

(4) r (h. kb) (ka* 4 kb* 4 Ic*) (ha kb)
=a*.a—~b*.b =0;

therefore r* is normal to one vector in the plane, By the same argu-
ment r* is normal to the second vector :

1 1
za-—-i-b

in the plane, and thus r* is normal to the plane.

THEOREM. The length of the vector r*(hkl) is equal to 2x times the

reciprocal of the spacing d(hkl) of the planes (hkl) of the direct lattice.
Proof: If n is the unit normal to the plane, then A~ 'a-n is the

interplanar spacing. Now

(5) n= r‘/lt"!,

so that the spacing d(hkl) is

© rrea 2r

Ale] T e

We now go on to two important theorems about expansions of periodic

functions.

(6) _ d(hkl) = n a=

THEOREM. A function f(x) which is periodic with the period of the
lattice may be expanded in a fourier series in the reciprocal lattice
. vectors G. : _ -

Proof: Consider the series

) f@ = é‘l e,

to show that this is periodic with the period of the lattice we increase x
by a lattice vector:

(8) x—x+ ma- nb+pc,‘
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where m, n, p are integers. Then

(9) f(x + ma 4+ nb + pc) =3 deeso-xeeo-(..&.wpc);

but

(10) G- (ma+ nb + pc) = (ha* + kb* + Ic*) - (ma + nb + pc)
- = 2x(hm + kn + Ilp),

which is just an integer times 2x, so that

(11 J(x + ma + ab + pc) = f(x),

and the representation (7) has the required periodicity.

THEOREM. If f(x) has the periodicity of the lattice,

(12) [ <o,

unless K is a vector in the reciprocal lattice. )

Proof: This resulf is a direct consequence of the preceding theorem
and is essentially a selection rule for interband (G 7 0) and intraband
(G = 0) transitions. By (7)

(13) J@) = % age®®”,

and

(14) ]d’:r: f(x)e™* = Y ag f d®z £ ®+O= = q Y g A(K + G),
G G

where A is the kronecker symbol; and Q is the volume of the specimen; .
we also write A(K + G) as éx _g.

FOURIER LATTICE SERIES -
Consider the series

(15) g = N7HY Qe
k

We shall usually determine the allowed values of k by the periodic
boundary condition ¢,,x = g,, whence ¢*¥ = 1; this condition is
satisfied by k = 2xn/N, where n is any integer. Only N values of n
give independent values of the N coordinates ¢,. It is convenient to
take N as even and to choose the values of n as 0, +1, £2, - - - |
+(EN — 1), iN. We note that }N and — 1N give identical values of
e for all r, so that ‘we need take only $N. The value n = 0 or
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= 0 is associated with what is called the umform mode in wlnch all
¢r are equal, independent of r. : ,

THEOREM. Given (15), then

(18) - Qi = N—% 2 qe e,
Prooj Substitute (16) in (15):

a7 ’ o= N—? 2 q‘e‘k(r—s)

If s = r, then the sum over k gnves Ngy, the desired result. Ifs —'r =
o, some other integer,

(18) Eealn = Ee;Ztnle = 2 eiZﬂulN + Z e—stﬂulN

nw=Q: =1
. N-1 _ :11:
= E ei'hulN = 1 d =0
0 1 — athN
n- ) =

for o % 0. Thus we have the orthogonality relation -
(19y Y e = Ns,,.
%

This is the analog for discrete sums of the delta function representation
(20) [T, e ak = 2x5(a).
Consider the series defined for —3L < z < }L:
@1)  g(®) = LHE Qi
where k is any integer times 2x/L. -

THEOREM. Given (21), then
(22) Q =L% [ . ,dt 2
Proof: Substltute (21) in (22):
@  @=1"Yefa fr-i - ngJw - @,

because

i . -2 gin ${k' ~ ‘k)-i,‘
dt bt o <
W T T

except for k = &',

=0,
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tueoreM. The .potentiglr 1/ |xl may be expanded in a fourier series as

1 drol o
& R

where @ is the volume of the crystal.
_Proof: Following (22) consider, with r = |x|,

e—are—iq’-x' 1 -
(25) f d’z —= 2r f rdr f dp e @ TrgTer
i J -1

o __21-. dr (e—i(q'—-ia)r — ei(q’+i¢)r) = ix .
iq" Jo ¢* + o

On taking the limit « — +0 we obtain (24).

'~ SUMMARY OF QUANTUM EQUATIONS (4 = 1)

(26) i = Hy.
2D iF = |F,H], for an operator F.
.0 . _ €
(28) [f(x),p} = ’.a_xf(x)’ p= —igrad cA.
: 2
(29) U@,p =2 L p, + 2L

@ =3 o) «=(C ) =0 I
(31) v+==(8' (2)) "'.=(g 8)

For the harmonic oscillator,
(32) (njzln + 1) = (me) Hin + 1)%;

(n|p|n + 1) = —i(mw/2)%@n + DH*.
(33) Tr{A[B Cl} = Tr{[4,BIC}; Tr{ABC} = Tr{CAB}.

1 1 i L
—~ = 0’; F md(z); . @ == principal value.

34) L
(34) .-.“fozi_ts

Transition rate:

(35) W(n—m) = 2r|(mlli’ln)|’6(e,. — &)
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Density of states per unit energy range, free electrons:

(36) pa = 53 (2m)¥e,

(37) [ s 13503 = 33 = G stwra)
@ s =Y i - 5,
where the z; am,the roots of g(z) = 0.

(39) [, dz e = 208(3).

For nondegenerate states,
(40) |m)y®» = Im) + E’ BM
: ) €m — €}

€D = & + (m{Alm) + 3 KRHOF "’2!’.
[ m T

(41) - [4B,C] = A[B,C] + [4,C]B.

GENERAL TIME-DEPENDENT PERTURBATION THEORY
We consider the hamiltonian '

(42) H=Hy+V,

where V is called the perturbation. Even when H, and V are inde-
pendent of time, important results of perturbation theory appear more
naturally from time-dependent theory than from the usual time-
independent perturbation theory. We assume that the lowest eigen-
state ® of H can be derived from the unperturbed lowest eigenstate
& of Ho by adiabatically switching on the interaction V in the time
interval — o to 0. This assumption is not necessarily always true,
. and in-particular it fails if the perturbation causes one or more bound
states to appear below a continuum. The assumption is called the
adiabatic hypothesis. We shall use (only in this development) the
notation |) to denote an eigenstate of H and [) to denote an eigenstate
of Ho. The unperturbed ground state is IO) and the exaet ground
state is |0). The same notation is used again at the end of Chapter 6
in the identical connection,

THEOREM. If E, is defined by
(43) Hol0) = Eql0),
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and AE by

(49) (Ho + V)[0) = (Eo + ak)0),

then the exact shift in the ground-state energy caused by the pertur-
bation is '

©lvio).

(45) AE = —<6l—6-)-'

Proof: The result (45) follows on subtracting

(46) (O|H |0) = E(0|0)

from

47 (O|Ho + V|0) = (Eo + AE)(0|0).

Then

(48) (0{v|o) = aE(|0). QE.D.
We now undertake to calculate }j0). We replace V by

(49) .!-i.lilo ey, >0

This defines the process of adiabatic switching, in which the interaction
is switched on slowly between t = —® and { = 0. Between t = 0
and { = » the interaction is switched off slowly. We shall in the
following always understand that the limit s — -0 is to be carried out.
We work with the perturbation in the interaction representation:

(50) V(1) = eHvye Hetg—eld
so that the time-dependent Schrodinger equation has the form
ad
(51) i;‘— = V()®,
with the boundary econdition ®(— ®) = ®,. In the interaction
representation
(52) . () = ¢FvaL(y),

where &, is in the Schrédinger representation. We confirm (51) by
forming ° : .

(53) i = —Hoe'M'®, + ic'Teb, = Velive,



