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PREFACE

ABOUT THIS EDITION

This is a major revision. The goal for this edition is to create a contemporary text that
incorporates the best features of calculus reform, yet preserves the main structure of an
established and well-tested calculus course. This book is intended for those who want to
move forward with calculus reform but do not want to completely dismantle their current
course structure with radical or unproved materials. The most salient changes are as
follows:

B Technology — Each chapter ends with a set of exercises that are designed to be
solved using computer algebra systems or graphing calculators. Many of the
exercises involve applications, and almost all of them can be solved in a variety of
ways that are limited only by the student’s imagination.

B Streamlining — The text is more than 200 pages shorter than the previous edition.
We achieved this by using a less wasteful text design and by rewriting almost every
section with the goal of greater clarity in less space. No material was omitted or
modified for the sake of brevity at the cost of understandability, and the quality of
the exposition was ensured by a team of outstanding reviewers that included a Polya
award winner (excellence in exposition) and a Lindback award winner (excellence
in teaching).

B Revision of Multivariate Calculus — The multivariate calculus material was
completely rewritten, incorporating the concept of a vector field and focusing more
on the major applications of vector analysis to physics and engineering.

M New Material — Material not included in previous editions was added: Jacobians,
parametric representations of surfaces, Kepler’s laws, conics in polar coordinates,
integrals with respect to arc length, vector fields, and an appendix with some basic
material on complex variables that can serve as a reference for engineers and
students who need this material for other courses.

W Early Transcendental Option — The chapter on logarithms was completely
rewritten. The exposition is greatly improved, and the material is now structured in
such a way that much of it can be covered earlier in the text for those who want an
earlier treatment of logarithms and exponentials. A free Early Transcendental
Supplement is available to help implement this option. That supplement breaks the
material in Sections 7.1 and 7.2 into self contained units and suggests where those
units might be inserted earlier in the text.

B More Use of Calculator Computations in the Exposition — We assume in this
edition that the student has a numerical calculator available as he or she reads the
text, and numerical computations are used more extensively in developing concepts.

OTHER FEATURES

B Rule of Four — The term “rule of four” has recently been coined to describe
exposition that presents ideas from the symbolic, geometric, computational, and
verbal viewpoints. Readers familiar with earlier editions of this text will recognize
that this has always teen an integral part of my writing style. This style continues in
this edition.

B  Early Differential Equations Option — First-order linear and separable
differential equations appear in the chapter on logarithmic and exponential functions
(Chapter 7). This allows us to give some nice applications of logarithms and
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exponentials immediately and also helps meet the needs of those engineering and
science students who require this material in courses taken concurrently with
calculus. This section can be omitted or deferred with no difficulty.

B  Early Logarithm and Exponential Option — Sections 7.1 to 7.3 provide a
preliminary discussion of logarithms and exponentials that does not rely on the
integral definition of the logarithm or on the theory of inverse functions. Thus, these
sections can be isolated and presented earlier, reserving the integral definition of the
logarithm and the more theoretical material in Sections 7.4 and 7.5 for later
coverage.

® Trigonometry Review — Deficiencies in trigonometry plague many students, so I
have included a substantial trigonometry review in Appendix B.

M Rigor — The challenge of writing a good calculus book is to strike the right
balance between rigor and clarity. My goal is to present precise mathematics to the
fullest extent possible for the freshman audience, but where clarity and rigor
conflict I choose clarity. However, I believe it to be essential that the student
understand the difference between a careful proof and an informal argument, so I try
to make it clear to the reader when arguments are informal. Theory involving 8-€
arguments appear in separate sections, so they can be bypassed if desired.

M Historical Notes — The biographies and historical notes have been a hallmark of
this text from its first edition, and new biographies have been added in this edition.
All of the biographical material has been distilled from standard sources with the
goal of capturing the personalities of the great mathematicians and bringing them to
life for the student.

B Section Exercises — Section exercise sets begin with routine problems and
progress gradually toward problems of greater difficulty. Exercises that require a
calculator are listed at the beginning of the exercise set and marked with the icon
[Cl. Many exercise sets contain so-called “spiral” problems, which revisit earlier
problem types using concepts from the current section.

ABOUT THE TECHNOLOGY EXERCISES

B The purpose of the technology exercises is to introduce the student to techniques of
problem solving using graphing calculators and/or computer algebra systems such
as Mathematica™, Maple™, or Derive™. Many of these exercises involve
applications of calculus, and most of them can be solved using either a graphing
calculator or a computer algebra system. Thus, part of the challenge to the student is
to develop a problem-solving strategy that is appropriate for the technology that he
or she has available.

B Many of the problems cannot be solved by a blind, unintelligent use of technology;
they may require some preliminary hand calculation to put the problem in an
appropriate form or some thoughtful analysis to ensure that solutions are not missed
when technology is applied.

B Many problems will raise issues of accuracy, since some students may be able to
avoid decimal approximations using a computer algebra system and other students
may obtain different levels of decimal accuracy depending on their strategy and
technology. This is the opportunity for an instructor to explore issues of error
analysis if so inclined. However, it is not essential.

B The technology exercises are more open-ended than the exercises at the end of each
section, making them more like problems that arise in the real world. Instructors can
either leave the students on their own or can provide a level of guidance that fits

their own teaching philosophy. Some instructors may want to use these exercises for
group projects.
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Table 17.7.1
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Revision of
Multivariable Calculus
The multivariable calculus
material was completely
rewritten, incorporating
the concept of a vector
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t : specific depth. At each point of the layer, the water has a C

‘ represent by a vector at that point (Figure 18.1.2). This association of velocTy~e

. < S » points in the (wo-dimensional layer is called the flow field at that Jayer. These ideas are

.~ - ’ ~  captured in the following definition.

1/ -
A \\\U///- - —_— e — = - —— —
"j S b = ~ | 18.1.1 DEFINITION. A vector field is & function that associates a unigue vector F(P) |
| ,/ /f\ F with each point P in a region of 2-space or 3-space. ‘.‘
PR 7 with eath pOm - ———— - -
- J 3

Loy » Example 1 LetO be a fixed point in 2-space. and for each point P in 2-space define the
o s % vector field F(P) by F(P) = OP. Some typical vectors in this vector field are shown in
Figure 18.1.1 Figure 18.1.3. In that figure we have followed the standard convention of positioning the

vector F(P) with its initial point at P.

Observe that the concept of a vector field has been defined without reference toa
- 3 coordinate system: jitissaidtobea coordinate-free definition. However. for computational
purposes it is often desirable to work with vector fields in coordinate systems. If F(P)isa
vector field in 2-space with an xy-coordinate system, then the point P has coordinates (x, ¥)-
and the components of the vector F(P) are functions of x and y. Thus, F(P) can be

expressed as
Flx.y) = flx, Wi + g, i
Similarly, in 3-space with an xyz-coordinate system, a vector field F(P) can be expressed as

F(x.y.2) = flx. ) i+ gy i hix.y. Dk
Justas itis impossible to describe a curve completely by plotting finitely many points, sO
it is impossible 0 describe a vector field completely by drawing finitely many vectors.
Nevertheless, itis often possible to geta useful picture of a vector field by sketching 2 finite
number of vectors that are well chosen.

Example 2 Figure 18.1.4 shows sketches of three vector fields in 2-space. For simplic-
ity, we have omitted the scales and selected vectors that do not overlap: nevertheless. the

sketches still provide some useful geometric insight into the behavior of the fields. <

Figure 18.1.3
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which implies that the graph of e is concave up on (=, +=),
Similarly, we can verify that In x is increasing and concave down from its first and
second derivatives. For all x in (0, +%) we have
dix [Inx] = % >0
which implies that In x is inci ing on (0, +=), and
d? d|1l 1
dx? {in x] dx [x] I 0

which implies that In x is concave down on (0, +).

The following limits, which are consistent with Figure 7.3.1, will be proved later.

lim e® = 4 and lim ¢*=0 (1-2)
T b . el

lim Iny= +% and lim Inx = -2 (3-4)
] 2-0*

The graph of y = In x rises so slowly that Figure 7.3.1 does not adequately convey that
lim Inx =+
oo
even though we shall prove this to be so later. Moreover, since the graph of e* is the
reflection of the graph of In x about the line y = x, the slow growth of In x corresponds to a
rapid growth of e, Table 7.3.2, which was generated with a calculator, illustrates the slow
growth of In.x and the rapid growth of e*,

Mathematicians often use powers of x as a *‘measuring stick’* for describing how rapidly a
function grows. For example, we shall prove later that if » is any positive integer, then

s €
lim = = 4w and lim ln—,;t =0
z=

Limit (5) tel
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Calculators and
Computers in the
Exposition

The student is assumed
to have a numerical cal-
culator available as he or
she reads the text, and
numerical computations
are used extensively in
developing concepts.
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136 DIFFERENTIATION
xiv FEATURED IN THIS EDITION

Historical Perspectives

Historical biographies that focus
on the personalities of the great
mathematicians bring these
people to life and give the stu-
dent a sense of mathematical

history.
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[ aumerical calculations

The relationship between continuity and differentiability was of great historical signifi-
cance in the development of calculus. In the carly nineteenth century mathematicians
believed that the graph of a continuous function could not have too many points of
nondifferentiability bunched up. They felt that if a continuous function had many points of
nondifferentiability. these points, like the tips of a sawblade. would have to be separated
from each other and joined by smooth curve segments (Figure 3.2.12). This misconception
was shattered by a series of discoveries beginning in 1834. In that year a Bohemian priest,
philosopher, and math named Bemhard Bolzano* discovered a procedure for
constructing a continuous function that is not differentiable at any point. Later, in 1860, the
great German mathematician, Karl Weierstrass** produced the first formula for such a
function. The graphs of such functions are impossible to draw: it is as il the comers are so
numerous that any segment of the curve, when suitably enlarged. reveals more comers.
The discovery of these pathological functions was important in that it made mathemati-
cians distrustful of their geometric intuition and more reliant on precise mathematical
proof. However. they d only math ical curiositics until the early 1980s, when
applications of them began to emerge. During the past 10 years they have started to play a
fundamental role in the study of geometric objects catled fractals. Fractals have revealed
an order to natural phenomena that were previously dismissed as random and chaotic.
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Figure 3.2.12

* BERNHARD BOLZANC (1781 - 1X48). Bodzano, the son of an an dealer, was bom in Prague. Bohemia (Crechonto-
vakia). He was educaied at the University of Prague. and cventually won enough mathematical fame 1o be
recommended for 3 mathematics chair there. However, Bolzano became an ondained Roman Catholic priest, and
in 1305 he was appointed 10 a chair of Philosophy at the University of Pragoe. Bolzano was a man of great human
compassion: be spoke out for educational reform. he voiced the right of indiidual conscience over governmen
demands. and he lectured on the absurdity of war and militarismy. His views so discachanied Emperor Franz 1 of
Austria that the emperor pressed the Archbishop of Prague to have Bolzano recamt his statements. Bolzano
refused and was then forced to retire in 1824 on a smalt pensioa. Bolzano's main contribution 1o mathematics was
philosophical. His work helped convince math tany that sound must ulti v rest on rigorous
proof rather than iotuition. In addition o his work in Bolzano i gated prob < i
space, force, and wave propagation.

A (1815-1897). Wei the s0n of a customs afticer, was bom in Otenfelde, Germany .
As a youth Wed showed ding skills in | ges and However, at the urging of his
dominant father, Weierstrass entered the law and commerce program at the 1 niversity of Bonnr. To the chagrin of
his family. the rugged and congenial young man concentrated instead on fenving amd beer drinking. Four vears
taier be returned home without a degree. In 1839 Weierstrass entered the Academy of Miinster 1 study for a
career in secondary education. and he met and siudied under an excellent mathematician named Christof
. Gudermann's idcas greatly influenced the work of Weierstrass. After receiving his teaching
certificate. Weierstrass spent the next IS years in sccondary education teaching German, geography. and
mathematics. in addition, he taught handwriting to small chikdren. During this period much of Weicrstrass's
mathematical work was ignored hecause he was a secondary schoolicacher and not 4 college professor. Then, in
1854, he published a paper of major importance which created a sensation in the mathematics world and
ed Mm to i L fame ight. He was i iately given an honorary Doclorate at the
University of Kbnigsherg and began a new carcer in college teaching at the University of Berlin in 1856, In 1859
the strain of his mathematical rescarch caused a temporary nervous breakdown and bed to spelts of dizziness that
plagued him for the rest of his life. Weierstrass was a brilliant teacher and his claswes overflowed with multitodes
of auditors. In spite of his fame. he never lost his carly beer-drinking congeniality and was atways in the company
of students. both ordinary and brilliant. Weierstrass was acknow Jedged as the leading mathematical analvst in the
world. He and his students apened the door 10 the modem school of mathematicat analysis
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Rule of Four

The term “rule of four” describes the
presentations of ideas from symbolic,
geometric, computational, and verbal
viewpoints. Readers of earlier edi-
tions will recognize that this has
always been an integral part of the
Anton writing style. The style contin-
ues in the fifth edition.
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B 157 KEPLER'S LAWS OF PLANETARY MOTION

One of the great advances in the history of astronomy occurred in the early 1600s
when Johannes Kepler* deduced from empirical data that all planets in our solar
system move in elliptical orbits with the sun at a focus. Subsequently, Isaac !Vewmn

howed math, ly that such ple 'y motion is the consequence of an inverse-
Square law of gravitational attraction. In this section we shall use the concepts
developed in the p ling ions of this chapter to derive three basic laws of
planetary motion, known as Kepler’s laws.

O KEPLER'S LAWS In 1609 Johannes Kepler published a book known as Astr " N{)V{I ('ur SC s as
Commentaries on the Motions of Mars) in which he succeeded in distilling thousands of
years of observational astronomy into three beautiful laws of planetary motion.

15.7.1 KEPLER'S LAWS.

* Firstlaw (Law of Orbits). Each planet moves in an elliptical orbit with the sun at a
focus.

* Second law (Law of Areas).
from the sun to a planet.

* Third law (Law of Periods). The square of a planet's period (the time it takes the

planet to complete one orbit about the sun) is proportional to the cube of the length
of the semimajor axis of its elliptical orbit.

Equal areas are swept out in equal times by the line

O CENTRAL FORCES

To derive Kepler's laws, we shall assume that the force exerted by the sun on a planet is
always directed toward the sun's center. In general, a force that is always directed toward a
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7.1 LOGARITHMS AND EXPONENTS (AN OVERVIEW)
Table 7.1.1 Since we want 2” to be a continuous function of x, and hence continuous at 7, these rational
oF powers of 2 would have to approach 2”. This suggests that we might define 27 as the limit*
e of these rational powers of 2. This idea is illustrated numerically in Table 7.1.1, which was
3 8.000000 generated with a calculator. From Table 7.1.1, the value of 27 rounded to four decimal
31 8.574188 places is 8.8250.
314 8815241 In this informal section we shall accept without proof that the preceding limit procedure
3.141 8.821353 produces a definition of 5™ for irrational x such that the following are true:
3.1415 £.824411
3.14159 8.824962 * b7 is a continuous function for all b > 0.
3041592 8.824974 * b* s a differentiable function for all > 0.
* The standard properties of exponents such as b*** = b“b" continue to hold.
The first two properties are consistent with the graphs shown in Figure 7.1.1b.
O REVIEW OF LOGARITHMS In algebra a logarithm is defined as an exponent. More precisely, if 5> 0 and b # 1, then

for positive values of x one defines
logy, x

(read, *‘the logarithm to the base b of x*") to be that power to which b must be raised to
produce x. Thus,

logyp 100 =2

log,8 =3
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Early Transcendental Option

The logarithm chapter has been
rewritten to allow for an early
transcendental option. The expo-
sition is now structured so that
the basic material can be moved
forward for those who want an
earlier treatment of logarithms
and exponentials.




SUPPLEMENTS I

GRAPHING CALCULATOR SUPPLEMENTS

The following supplement contains a collection of problems that are intended to be
solved on a graphing calculator. The problems are not specific to a particular brand of
calculator. Also provided is an overview of the types of calculators available and general
instructions for calculator use.

B Discovering Calculus with Graphing Calculators, Second Edition
ISBN: 0-471-00974-1

The following free supplement provides a brief overview of those aspects of graphing
calculators that are relevant to the problems in this text. Topics include: choice of
viewing window, roundoff error, techniques for finding roots, and common pitfalls
associated with graphing calculators.

B Graphing Calculator Survival Guide
ISBN: 0-471-13172-5

SYMBOLIC ALGEBRA SUPPLEMENTS

The following supplements are collections of problems for the student to solve. Each
contains a brief set of instructions for using the software as well as an extensive set of
problems utilizing the capabilities of the software. The problems range from very basic
to those involving real-world applications.

B Discovering Calculus with DERIVE™, Second Edition
Jerry Johnson, University of Nevada—Reno
Benny Evans, Oklahoma State University
ISBN: 0-471-00972-5

B Discovering Calculus with MAPLE™
Kent Harris, Western Illinois University
Robert J. Lopez, Rose~Hulman Institute of Technology
ISBN: 0-471-55156-2

B Discovering Calculus with MATHEMATICA™
Cecilia A. Knoll, Florida Institute of Technology
Michael D. Shaw, Florida Institute of Technology
Jerry Johnson, University of Nevada-Reno
Benny Evans, Oklahoma State University
ISBN: 0-471-00976-8

CD-ROM VERSION OF CALCULUS FOR IBM
COMPATIBLE COMPUTERS

This supplement is an electronic version of Anton’s Calculus, the Student’s Solutions
Manual, and the Calculus Companion on compact disk for use with 1BM compatible
computers equipped with a CD-ROM drive. All text material and illustrations are stored
on disk with an interconnecting network of hyperlinks that allows the student to access
related items that do not appear in proximity in the text. A complete keyword glossary
and step-by-step discussions of key concepts are also included.

B CD-ROM Version of Anton Calculus: An Electronic Study Environment

Developed by Smart Books. Inc.
ISBN: 0-471-55803-6




xviii SUPPLEMENTS

CD-ROM MULTIMEDIA SUPPLEMENT FOR IBM
COMPATIBLE COMPUTERS

This highly interactive multimedia CD provides opportunities for students to ask “what
if” questions, change parameters, enter their own functions and see the effects of their
mathematical decisions in real time. There are 24 multimedia modules accompanied by a
laboratory workbook that covers key concepts and spans the entire calculus sequence.

M Calculus Connections: A Multimedia Adventure
Douglas Quinney, University of Keele
Robert Harding, Cambridge University
IntelliPro, Inc.
ISBN: 0-471-13795-2

EARLY TRANSCENDENTAL SUPPLEMENT

This free supplement is designed for those who want an early treatment of exponentials
and logarithms. In this short supplement the material in Section 7.2 is broken into
smaller self-contained units for easy placement earlier in the text, and a guide for
implementing the early transcendental option is provided.

W Early Transcendental Supplement to Accompany Anton Calculus 5/E
ISBN: 0-471-13173-3

LINEAR ALGEBRA SUPPLEMENT

This free supplement is a brief introduction to those aspects of linear algebra that are
of immediate concern to the calculus student. The emphasis is on methods rather than
proof.

B Linear Algebra Supplement to Accompany Anton Calculus / SE
ISBN: 0-471-10677-1

STUDENT STUDY RESOURCES

The following supplement is a tutorial, review, and study aid for the student.

B The Calculus Companion to Accompany Anton Calculus / SE
William H. Barker and James E. Ward, Bowdoin College
ISBN: 0-471-10678-x

The following supplement contains detailed solutions to all odd-numbered exercises.

B Student’s Solutions Manual to Accompany Anton Calculus / SE
Albert Herr, Drexel University
ISBN: 0-471-10589-9

RESOURCES FOR THE INSTRUCTOR

There is a resource package for the instructor that includes hard copy and electronic
test banks and other materials. These can be obtained by writing on your institutional
letterhead to Debra Riegert, Senior Marketing Manager, John Wiley & Sons, Inc.,
605 Third Avenue, New York, N.Y., 10158-0012.




ACKNOWLEDGMENTS I

It has been my good fortune to have the advice and guidance of many talented people,
whose knowledge and skills have enhanced this book in many ways. For their valuable
help I thank:

REVIEWERS AND CONTRIBUTORS TO EARLIER EDITIONS

Edith Ainsworth, University of Alabama

David Armacost, Amherst College

Larry Bates, University of Calgary

Irl C. Bivens, Davidson College

Harry N. Bixler, Bernard M. Baruch
College, CUNY

Marilyn Blockus, San Jose State University

Ray Boersma, Front Range Community
College

David Bolen, Virginia Military Institute

Daniel Bonar, Denison University

George W. Booth, Brooklyn College

Mark Bridger, Northeastern University

John Brothers, Indiana University

Robert C. Bueker, Western Kentucky
University

Robert Bumcrot, Hofstra University

James Caristi, Valparaiso University

Chris Christensen, Northern Kentucky
University

Hannah Clavner, Drexel University

David Cohen, University of California,
Los Angeles

Michael Cohen, Hofstra University

Robert Conley, Precision Visuals

Terrance Cremeans, Oakland Community
College

Michael Dagg, Numerical Solutions, Inc.

Stephen L. Davis, Davidson College

A. L. Deal, Virginia Military Institute

Charles Denlinger, Millersville State
College

Dennis DeTurck, University of Pennsylvania

Jacqueline Dewar, Loyola Marymount
University

Irving Drooyan, Los Angeles Pierce College

Tom Drouet, East Los Angeles College

Ken Dunn, Dalhousie University

Hugh B. Easler, College of William and
Mary

Joseph M. Egar, Cleveland State University

Garret J. Etgen, University of Houston

James H. Fife, University of Richmond

Barbara Flajnik, Virginia Military Institute

Daniel Flath, University of South Alabama

Nicholas E. Frangos, Hofstra University

Katherine Franklin, Los Angeles Pierce
College

Michael Frantz, University of La Verne

Susan L. Friedman, Bernard M. Baruch
College, CUNY

William R. Fuller, Purdue University

G. S. Gill, Brigham Young University

Raymond Greenwell, Hofstra University

Gary Grimes, Mt. Hood Community College

Jane Grossman, University of Lowell

Michael Grossman, University of Lowell

Douglas W. Hall, Michigan State University

Nancy A. Harrington, University of Lowell

Kent Harris, Western Illinois University

Albert Herr, Drexel University

Peter Herron, Suffolk County Community
College

Konrad J. Heuvers, Michigan Technological
University

Robert Higgins, Quantics Corporation

Louis F. Hoelzle, Bucks County Community
College

Herbert Kasube, Bradley University

Phil Kavanaugh, lilinois Wesleyan
University

Maureen Kelly, Northern Essex Community
College

Harvey B. Keynes, University of Minnesota

Paul Kumpel, SUNY, Stony Brook

Leo Lampone, Quantics Corporation

Bruce Landman, Hofstra University

Benjamin Levy, Lexington H.S., Lexington,
Mass.

Phil Locke, University of Maine, Orono

John Lucas, University of Wisconsin—
Oshkosh

Stanley M. Lukawecki, Clemson University

Nicholas Macri, Temple University

Melvin J. Maron, University of Louisville

Thomas McElligott, University of Lowell

Judith McKinney, California State
Polytechnic University, Pomona

Joseph Meier, Millersville State College

Ron Moore, Ryerson Polytechnical Institute

Barbara Moses, Bowling Green State
University

David Nash, VP Research, Autofacts, Inc.

Richard Nowakowski, Dalhousie University

Robert Phillips, University of South
Carolina at Aiken

Mark A. Pinsky, Northeastern University

David Randall, Oakland Communiry College

William H. Richardson, Wichita State
University

David Sandell, U.S. Coast Guard Academy

George Shapiro, Brooklyn College

Donald R. Sherbert, University of Illinois

Wolfe Snow, Brooklyn College

Ian Spatz, Brooklyn College

Jean Springer, Mount Royal College

Norton Starr, Amherst College

Richard B. Thompson, The University of
Arizona

William F. Trench, Trinity University

Walter W. Turner, Western Michigan
University

Richard C. Vile, Eastern Michigan
University

Shirley Wakin, University of New Haven

James Warner, Precision Visuals

Peter Waterman, Northern Illinois
University

Evelyn Weinstock, Glassboro State College

Candice A. Weston, University of Lowell

Yihren Wu, Hofstra University

Richard Yuskaitis, Precision Visuals




xx  ACKNOWLEDGMENTS

DEVELOPMENT TEAM FOR THE FIFTH EDITION

The following survey respondents critiqued the previous
edition and recommended many of the changes that found
their way into the new edition.

Robert C. Banash, St. Ambrose University

George R. Barnes, University of Louisville

John P. Beckwith, Michigan Technological University
Joan E. Bell, Northeastern Oklahoma State University
Barbara Bohannon, Hofstra University

Phyllis Boutilier, Michigan Technological University
Stephen L. Brown, Olivet Nazarene University
Virginia Buchanan, Hiram College

Carlos E. Caballero, Winthrop University

Stan R. Chadick, Northwestern State University
Hongwei Chen, Christopher Newport University
Robert D. Cismowski, San Bernardino Valley College
David Clydesdale, Sauk Valley Community College
Cecil J. Coone, State Technical Institute at Memphis
Norman Cornish, University of Detroit

William H. Dent, Maryville College

Preston Dinkins, Southern University

Scott Eckert, Cuyamaca College

Judith Elkins, Sweet Briar College

Brett Elliott, Southeastern Oklahoma State University
Dorothy M. Fitzgerald, Golden West College

Ermesto Franco, California State University—Fresno
Daniel B. Gallup, Pasadena City College

Mahmood Ghamsary, Long Beach City College
Michael Gilpin, Michigan Technological University
S. B. Gokhale, Western Illinois University

Morton Goldberg, Broome Community College
Mordechai Goodman, Rosary College

Sid Graham, Michigan Technological University
Kent Harris, Western Illinois University

Jim Hefferson, St. Michael College

Warland R. Hersey, North Shore Community College
Konrad J. Heuvers, Michigan Technological University

Robert Homolka, Kansas State University—Salina
John M. Johnson, George Fox College

Wells R. Johnson, Bowdoin College

Richard Krikorian, Westchester Community College
Fat C. Lam, Gallaudet University

James F. Lanahan, University of Detroit-Mercy
Kuen Hung Lee, Los Angeles Trade—Technology College
Marshall J. Leitman, Case Western Reserve University
Darryl A. Linde, Northeastern Oklahoma State University
Leland E. Long, Muscatine Community College
Mauricio Marroquin, Los Angeles Valley College
Larry Matthews, Concordia College

Phillip McGill, Illinois Central College

Aileen Michaels, Hofstra University

Janet S. Milton, Radford University

Robert Mitchell, Rowan College of New Jersey
Marilyn Molloy, Our Lady of the Lake University
Kylene Norman, Clark State Community College
Roxie Novak, Radford University

Donald Passman, University of Wisconsin

Walter M. Patterson, Lander University

Edward Peifer, Ulster County Community College
Richard Remzowski, Broome Community College
Guanshen Ren, College of Saint Scholastica

Naomi Rose, Mercer County Community College
David Ryeburn, Simon Fraser University

Ned W. Schillow, Lehigh County Community College
Parashu R. Sharma, Grambling State University
Howard Sherwood, University of Central Florida
Bhagat Singh, University of Wisconsin Centers
Martha Sklar, Los Angeles City College

John L. Smith, Rancho Santiago Community College
Jean Springer, Mount Royal College

David Voss, Western Illinois University

Bruce F. White, Lander University

Gary L. Wood, Azusa Pacific University

Michael L. Zwilling, Mount Union College

The following people contributed numerous new and imagi-
native problems to the text:

Loren Argabright, Drexel University
Patricia Clark, Rochester Institute of Technology

Lawrence Cusick, California State University—Fresno
Benny Evans, Oklahoma State University

Rebecca Hill, Rochester Institute of Technology

Jerry Johnson, University of Nevada—Reno

Michael Zeidler, Milwaukee Area Technical College

The following people assisted with the critically important
job of preparing the answer section, solutions for the
Student’s Solutions Manual, answers to technology exer-
cises, and preparing the index:

Chris Butler, Case Western Reserve University
Stephen L. Davis, Davidson College

Michael Dagg, Numerical Solutions, Inc.
Blaise DeSesa, Drexel University

Clyde Dubbs, New Mexico Institute of Mining and Technology
Sheldon Dyck, Waterloo Maple Software

Diane Hagglund, Waterloo Maple Software

Majid Masso, Brookdale Community College

Kylene Norman, Clark State Community College

Stanley Ocken, City College—CUNY

Sharon Ross, DeKalb College

Dennis Schneider, Knox College

Dan Seth, Morehead State University

Shirley Wakin, University of New Haven




