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ABSTRACT

This paper addresses the problem of automatic speech
1ecognition in the presence of interfering noise. The new ap-
proach described decomposes the contaminated speech sig-
nal using a generalisation of standard Hidden Markov Mod-
elling, whilst utilising a compact and effective parametrisa-
tion of the speech signal. The technique is compared to
some existing noise compensation techniques, using data
recorded in noise, and is found to have improved perfor-
mance compared to existing model decomposition tech-
niques. Performance is comparable to existing noise sub-
traction techniques, but the technique is applicable to a
x@ider range of noise environments and is not dependent on
“‘an accurate endpointing of the speech.

1. INTRODUCTION

The problem of achieving robust speech recognition in noise
has attracted a great deal of interest (3, 10, 11]'. Interfer-
ing noise degrades the performance of existing recognition
systems, particularly where there is a mismatch in the train-
ing and testing environments. Two main approaches to this
problem have been studied:-

1. compensation during the data preprocessing stage;

2. compensation during the recognition, or decoding,
stage.

The approach described here falls into the second category.
The contaminated speech signal is assumed to consist of two
independent components, clean speech and contaminating
noise, each of which is modelled separately. Some combi-
nation of these models is assumed to generate the observed
signal.

Model combination is preferable to subtraction based
schemes as it does not explicitly rely on the noise power
having zero variance. In standard spectral subtraction
schemes the case of non zero noise power variance is over-
come by setting some spectral subtraction threshold il
This threshold is not necessary in a model combindtion
scheme. Furthermore Varga [1, 2] has shown speechlabd
noise signal decomposition to be applicable to scengngs
where the noise may be temporally structured and higkl
time varying e.g. machine gun noise, interfering spdectrs
The technique introduced in this paper uses a compactlané:
effective parametrisation of the signal, Mel-Frequency Lepa
strum Coefficients (MFCC) {9]. We combine this paramers=
sation with a method of model combination, while avoiffingy
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some of the assumptions made in previous work (1, 7). This
technique will be referred to as MFCC model combination.

MFCC model combination is evaluated for speech in the
presence of car noise using speech recorded in a real car
environment. Comparisons in performance are made with
non-linear spectral subtraction due to Lockwood [8] and
the contaminated speech decomposition technique due to
Varga [1].

2. THEORY

The observed signal is assumed to consist of two compo-
nents, noise and clean speech, which are modelled sepa-
rately. It is assumed that combining the output from these
two models will generate the noise contaminated speech sig-
nal. The notation used in this paper is that O, represents
the observation in the linear energy frequency domain, O}
the log energy frequency domain and Of the energy que-
frency domain. A symbol in bold is a vector or matrix,
subscripts refer to elements of the vector, hence y; refers to
the i* element of the vector .

Using a Hidden Markov Model (HMM) based recogniser
the probability of some observation may be evaluated as

Observation Probability = P(Observation|M;@M,) (1)

where M; and M, are the clean speech model and noise
model respectively, trained on MFCC, and ® is some com-
bination operator to combine the two models. Recognition
is performed using the generalised Viterbi decoding algo-
rithm. This decoder attempts to simultaneously calculate
the optimum state sequence in both the speech and the
noise models. Probabilities are calculated as

Pi(4,7) = max Pe—_1(u, v)aly,a24 ;01:@52;(O5) (2)

where P.(i, ) is the probability at time t of being in state
iin model 1 and state j in model 2: al, is the transition
Rrghability, from state u to state i in model 1: a2, is the
Ltrapsion probabiity from state v to state j in model 2 and
F}.‘mm ) 1s the observation probability. The observation
'Probabiiity] takes the general form

i 82,(05) = / P(015, 0215, 5) ®)

Wher¥ B3¢ ls the observed output vector, O1f is the out-
put symoq 1rom model 1, O2f is the output symbol from
moded¥an the integral is over the couples Of = O1¢®02¢.
To cddul:e this probability explicitly over all couples is

nally intractable, so some approximation to the
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>
distribution is required. The form of the approximation is
dependent on the parametrisation used, in this case MFCC.
The observation sequence in the quefrency domain may
be described in terms of the observation sequence in the log
energy frequency domain.

Of = COi (4)

where C is the matrix representing the cosine transform,
defined as C,; = cos (i(j — 0.5)x/N), where N is the num-
ber of energy filterbanks used. It should be noted that the
subscripts 1 and 2 are omitted for this section, as the same
principle applies to both the noise model and the speech
model. From equation 4 it is possible to write

o = clot (5)
The output probability distribution, b:;(Of), is assumed to
be gaussian or a mixture of gaussian distributions. Equa-
tion 5 describes a linear transformation, therefore the mean,
1!, and the covariance matrix, &', can be calculated as

ul - c—lﬂc (6)
21 = C—IEC(C—-I)T (7)
Hence the output probability distribution, b;(0O}), is also a
single gaussian or mixture of gaussians. For the case of a

single gaussian the distribution prior to the log transform
is a log normal. The mean may be calculated from

E{e™}

i

e5 = EX=u YN x=uhT

1
/ (V2r)n |23

Rn

where R" is the region of all possible values of x, the ob-
served vector. This equation may be simplified to

o= BN (8)

The variance may similarly be calculated.
£ {e™re%} .
1 e _ =1y I\T
=/______l_ex.+z, L(X—p! N B~ (x=p') dx
FRVERETE
!
= u«ujez""
The variance may then be shown to be

Ti; = E{e"ie™} - E{e} E{e%)
ity [exl‘f - 1] (9)

From the assumption that the noise power and speech power
are independent and additive the combined mean, u4, and

covariance, X, are given by Poow M
u = SNRul + pu2 (10,)
$ = SNR’Z] 452 Co)

The SNR term in equations 10 and 11 is required to com-
pensate for both the signal to noise ratio of the observed
speech and noise and the mismatch in the training and test
energy levels for the speech. o

Given the combined mean and variance, and assuming
that the combined distribution is approximately lognormal,
the combined distribution in the quefrency domain may
%e obtained by inverting the process previously described.

ence

. Ty
we = log(p) - Slog lF + l] (12)
=, = log [f;, + 1} (13)
Finally converting to the quefrency domain
pt = Cu (14)
¢ = czc’ (15)

The final output probability distribution may be desciibed
by

b1; ® b2;(0F) = N(Of, u, £°) (16)

where N(O;, 1, L) is a gaussian probability distribution
with a mean vector g and a covariance matrix X.

Two problems arise from the use of equation 16. The
covariance matrix £° will not in general be a diagonal ma-
trix, this results in an increase in the decoding time. In
addition the speech is known to be distorted by the Lom-
bard effect [4, 5]. In [4] various techniques are described
for improving HMM robustness to stress distortion, includ-
ing the Lombard eflect. MFCC model combination employs
the grand fixed variance, £, in the decoding stage for ro-
bustness to stress distortion. Hence the covariance matrix
used in the decoder is based on the variance over all the
utterances of all the word classes. However the grand fixed
variance may not be used in the calculation of the com-
bined means and variances. The grand variance is an over-
estimate of the actual variance, hence its use in equation 8
would result in an over-estimate of the mean in the linear
domain. The actual output probability distribution used is

b1; ® b2,(0¢) = N(O%, u¢, Z7) (17)

Using equation 17 also ensures that the covariance matrix
is diagonal.

Equation 17 may be compared with the output probabil-
ity proposed by Varga [1]

bl ®2,(0;) = C(O;, ul', T1)N(0;, u2', £2')
+ N0, 1, T1)C(0), n2', £2Y) (18)

and the standard output probability distribution using a
single model

b1:(07) = N(Of,p1% Z1%) (19)

where C(Oi, u, X) is the cumulative probability function
with mean vector p and covariance matrix . In both
equation 18 and equation 19 the covariance matrices are
assumed to be diagonal.

The use of MFCC model combination also reduces the
problem of models learning low energy events, which are
visible in the clean training environment, but are not vis-
ible in the test environment [11]. This aspect has been
compensated for in spectral subtraction schemes by the ad-
dition of artificial noise in both the training and test envi-
ronments. However the artificial noise added in these situ-
ations is subjectively chosen a few dB above the noise floor,

1-234




P

possibly resulting in unnecessary masking of some useful
speech features. By combining the models in the linear-
energy domain low energy speech events are automatically
masked in the presence of high energy noise.

3. COMPUTATIONAL COMPLEXITY

A critical aspect in the use of any noise compensation
scheme is the computational overhead associated with its
implementation. This overhead may result from additional
complexity in both the preprocessing and the decoding
stages of the recogniser.

The use of standard spectral subtraction schemes [6] re-
sult in additional complexity at the preprocessing level, due
to the estimation of the noise power spectrum and the sub-
traction process. There is no additional overhead associated
with the decoding of the speech.

For the noise compensation scheme of Varga, overheads
are associated with both the pre- and the post-processing
stages. Firstly a noise model must be correctly trained and
updated as the noise environment changes. It would there-
fore be desirable to use a global noise model, trained over a
variety of noise conditions. In addition there is an overhead
associated with the decoder. Comparing equation 18 and
equation 19 an increase by a factor of four in complexity
may be seen. There is also the fact that the technique is
based on a log-energy filterbank frontend. This representa-
tion has been shcwn to be not as informationally intensive
as cepstral coefficients [9]. Hence the number of parameters
required is generally greater than for MFCC parametrisa-
tion.

MFCC model combination has the same requirement that
a noise model be calculated, as in the Varga compensation
scheme. Furthermore the model combining process is com-
putationally expensive. However by using a global noise
model for the short term variations in the noise, the rate of
update for combining models and training new noise models
is greatly reduced. For a single state noise model there is
no decoder overhead, compare equation 17 and equation 19,
however for more complex noise models a decoder overhead
is incurred. If an n state noise model, M,, is combined
with an m state speech model, M,,, the combined model,
My @D M, is an m * n state model. The factor of n in-
crease in the number of states results in a factor of n in-
crease in the decoder overhead. This additional overhead
is associated with any model combining process, including
the technique of Varga.

4., RESULTS
4.1. Databases

The databases used for the evaluation of the various tech-
niques were collected for ESPRIT II project No. 2101, Ad-
verse Environment Recognition of Speech.

The main database used was the ENST-1 ARS database.
This database consists of a 43 word vocabulary, based on a
possible set of in-car telephone commands, 10 training ut-
terances recorded in a stationary car and 15 word utterances
recorded during normal motorway driving. The speaker, yg,
was male, using his native language, French. The signal to
noise ratio (SNR) for the database was 0.52dB.

The second database used, the ENST-2 ARS database,
consists of a 43 word vocabulary recorded under the same
conditions as the first database. A different speaker, em,
was used, again male, speaking his native tongue, French.
The SNR for the second database was —3.53dB. ’

1-235

4.2. HMM Recogniser

The baseline recogniser was a 10 state word based HMM,
with eight emitting states and single gaussian output prob-
ability distributions. The speech was parametrised using
the first 10 MFCC, ignoring the zeroth coefficient. The two
standard spectral subtraction schemes, non-linear spectral
subtraction (NSS), due to Lockwood [8], and linear spec-
tral subtraction (LSS) based on the enhancement scheme
of Boll [10], both use a local estimate of the noise mean.
In addition NSS uses a local noise maximum in the noise
compensation scheme.

For MFCC model combination the speech models, again
10 state word models with eight emitting states, were
trained on eleven cepstral coefficients, including the zeroth
coefficient. The noise model used, a single emitting state
model, was trained on all the available noise data. After
combining, the decoding was based on the same 10 cepstral
coefficients as the baseline decoders using the expression for
the output probability distributions shown in equation 17.

The approach described by Varga [1] was also imple-
mented using a 27 log energy filterbank, based on a mel
scale, for the parametrisation of the speech. 10 state word
models were used for the speech and a single emitting state
model was used for the noise. Decoding was performed us-
ing the complete 27 parameter vector.

4.3. Recognition Results

echnique Recognition rate
No Compensation 49.15
Standard LSS 84.34
Matra NSS 92.40

Table 1: Baseline Recognition Results

The baseline recognition rates for the standard spectral
subtraction techniques are shown in table 1.
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Figure 1: Recognition rates vs assumed SNR for ENST-1

. Figure 1 shows the recognition rates against assumed
SNR for MFCC model combination. The best recognition
rate is 91.32% at an assumed SNR of 2.0. This result is
comparable with the recognition rate achieved by non-linear
spectral subtraction, 92.40%.

The mismatch between the optimal decoder SNR and the
actual SNR of the test data is partly due to the difference in
the energy levels between the training and the test speech.
This mismatch must be compensated for, as the models are
combined in the linear energy domain, which is sensitive



to alterations in absolute energy levels. Examining the to-
tal speech gain between training and testing the SNR was
found to be 3.6 {5.56dB), this corresponds to a recognition
rate of 87.75%. The use of a lower than theoretically pre-
dicted value of SNR may be accounted for by the effect of
stress on the cepstral coefficients. In [5] the cepstral norm of
lombard speech vowels is found to decrease by 15% to 30%
and energy levels at various frequency bands to decrease.
From figure 1 we see that the performance is not critically
dependent on the value of SNR chosen, since recognition
rates are over 90% for the range 1.5 < SNR < 3.0.

SNR | Recognition rate
2.0 69.61
3.6 54.57

Table 2: Varga Model Combination Recognition Rates

Recognition rates for the Varga decoder are shown in ta-
ble 2. As the Varga decoder is dependent on the abso-
lute values of the speech energy it was necessary to use an
assumed SNR, the values used being the theoretical value
and the ‘optimal’ model combining value previously found.
Again the theoretical value is found not to produce the best
results. The results show improvement over the standard
baseline decoder, but the performance is not comparable to
the standard noise compensation schemes.
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Figure 2: Recognition rates vs assumed SNR for ENST-2

The two most successful techniques on the ENST-1 ARS
database, NSS and MFCC model combination, were tested
using the ENST-2 ARS database. The models were trained
as previously described. Figure 2 shows recognition rates
against assumed SNR for the ENST-2 database. The com-
parative results are shown in table 3.

Technique Recognition rate
No Compensation 53.65
NSS 94.87
Best MFCC comb. 98.91

Table 3: Recognition Rates for ENST-2

A theoretical value for the assumed SNR is calculated
to be -0.28dB (0.9367), again this does not correspond to
the ‘optimal’ combination value of 3.0dB (2.0). However
from the high recognition rates, the speaker stress may be
assumed to be lower than that of the ENST-1 database.

Hepce the theoretical value for the SNR results in recog-
nition performance not significantly lower than that of the
‘optimal’ value. The performance is superior to that of NSS.

5. CONCLUSIONS

In this paper we have examined a new technique, MFCC
model combination, for the decomposition of speech in
noise. The technique has been shown to produce greater
improvements in recognition rate than that of Varga [1] and
comparable or better results than non-linear spectral sub-
traction. Furthermore the proposed technique uses a global
noise model, which cannot be employed in non-linear spec-
tral subtraction. The use of a global noise estimate reduces
the need for accurate end-pointing during recognition. No
computational overhead is associated with the use of MFCC

model combination at the decoder stage, though a noise "

model is required to be trained and updated.

Presently the technique has only been applied in a sce-
nario where a simple noise model is appropriate. Where the
noise has strong temporal structure the technique should
show significantly better performance than standard spec-
tral subtraction techniques. This aspect will be investigated
in future work.
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ABSTRACT

In this study, a cepstral likelihood measure based upon
the projection operation is incorporated into a mix-
ture density HMM scheme to improve recognition in
the presence of additive noise. The case is addressed
where the models are determined only under noise-free
conditions. A background discussion and derivation
of the measure is provided. Recognition experiments
are presented showing the usefulness of the proposed
measure over the standard Gaussian measure (weighted
Euclidean distance) for speaker independent, isolated
word recognition in noise. It was found that the pro-
posed mizture weighted projection measure significantly
improved performance in several noise types, including
white, jittering white, and colored noise. As an ex-
ample, at an SNR of 10 dB white noise, recognition
improved from only 38.4% correct using the Gaussian
measure to 83.6% using the developed measure.

1. INTRODUCTION

A speech recognizer designed to perform well under
noise-free conditions usually will show marked degrada-
tion in performance when background noise is present.
For the most part, methods presented in the literature
to improve recognition in noise tend to focus on ways
to effectively “remove” the noise from the degraded
speech. This can be in the form of enhancement tech-
niques such as spectral subtraction or microphone ar-
rays which try to filter out the noise or in the form
of modeling techniques which try to find models for
the noise-free speech and the noise signal, such as in
HMM’s [1]. However, such methods have shown lim-
ited performance improvements and can only be im-
plemented under conditions where an estimate of the
noise statistics is known. The approach taken in this
paper requires no estimate of the noise statistics and
does not require that they be constant. The focus is
on developing liketittood measures which are robust to
the effects of noise rather than trying to remove the
noise from the degraded speech. A similar approach
has been taken more recently in the literature for find-

ing both distance measures, such as spectral slope [2]
and weighted Itakura-Saito distance (3], and robust fea-
ture representations, such as the IMELDA system (4],
which are to a certain extent less affected by noise.

In our previous work [5], it was shown how a like-
lihood measure based upon the projection operation
could be incorporated into the Viterbi algorithm for
the case of continuous density HMM’s. The measure
was developed for both the cepstral and mel-cepstral
representations for speech. The proposed measure was
found to greatly improve speaker dependent, isolated
word recognition performance in the presence of white
noise. Hence, in our present, work, we extend the use of
this projection-based likelihood score for use in mixture
density HMM’s for speaker independent recognition. In
addition, the performance of the measure is evaluated
for other noise types, including white, jittering white,
and broadband colored noise to show its versatility in
varying backgrounds.

This paper is organized as follows. First, a back-
ground discussion of the formulation of the original
measure is presented, along with the derivation of the
measure for mixture density HMM’s. Following this,
recognition results are presented using the developed
mixture weighted projection measure for recognition in
varying noise types. Last, a summary of the results is
given.

2. DERIVATION

2.1. BACKGROUND

The original formulation of the projection measure as a
distance between two cepstral vectors was introduced
by Mansour and Juang [6]. The measure was based
upon both theoretical and empirical observations of
how white Gaussian noise affects the cepstral coeffi-
cients. It was found that the norm of these vectors
tended to decrease as more white noise was added and
that the angle between the vectors was less affected by
the noise. The idea in our previous work was to formu-
late a likelihood measure for HMM'’s which would com-
pensate for the effects of the noise in a similar fashion
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to the measure of Mansour and Juang.

The modification was made within the likelihood
scores of the Viterbi algorithm. Each word model is
defined by the parameter set A = (=, A, B), where 7
is the initial state vector, A is the transition matrix,
and B is the collection of b;, which defines the obser-
vation probability density function of the it* state in
the model. These state distributions are assumed to be
Gaussian functions of the following form:

bi(c:) = N(e, ui, Ci)
= @m) ¥|CiH exp (= J(c — w) T e - w))

where c; is the test cepstral vector, y; is the mean
cepstral vector of the i*® state in the model and C;
is its corresponding covariance matrix. The standard
negative log likelihood measure used can be defined as
a Gaussian or weighted Euclidean distance:

dwe(c,bi) = (e — ) CTl (e — wi) +log |Ci| , (1)
The modified likelihood score, known as the weighied
projection measure, was developed as follows:

(e ~ Aui)T C7¥ (e = Aps) +1og [Cil
leel”(1 = cos® B) +log |Ci| (2)
where cos 3 is the angle between the vectors ¢, and Hi

weighted in the space of C;! and X is the scale factor
defined as,

dwproj (Ct s bu) =

I

cf C7' s

pICTlu

This scale factor was incorporated to compensate for
the norm reduction and is equivalent to the projection
of the noisy test vector, c;, onto the noise-free refer-
ence, ¢, in the weighted space of Ci‘l. A further dis-
cussion of the theoretical interpretation of the measure
and its use for other parameter sets including the mel-
cepstral parameters used in this paper can be found
in [5). When used in a HMM system trained with noise-
free speech, the weighted projection measure defined
above was found to greatly improve recognition perfor-
mance over the standard Gaussian likelihood measure

defined in Equation 1 for speaker dependent, isolated
word recognition.

A=

2.2. EQUATION FORMULATION

The concept of the weighted projection measure defined
above for uni-modal Gaussian state distributions can
be expanded in a straightforward manner to the case
where the densities are mixtures of Gaussian functions.
The form of the mixture densities used in this study
are based upon a partitioning of the parameter space,
where each Gaussian function in the mixture represents
a partition or cluster in the parameter space. Using this
mixture partitioning, the most likely mixture in each
state is chosen for each observation, with the likelihood
of the i** state defined as

1
bi(c)) = 37 , nax N(es, pix, Cix)

1<k<M

where p;r and C;; are the mean and covariance of the
k** mixture in the i** state, N is the order of the obser-
vation vectors, and M is the number of mixtures (as-
sumed the same for all states). When using the Viterbi

algorithm to determine the probability that a given ob- .

servation sequence was produced by the model, the log
likelihood of the above probability is needed. For th
partitioned mixture above, the total log Iike i
be dominated by the minimum negative log probability

of all the Gaussian functions in the mixture {omitting
the 1/M term):

log bi(c:) = log [1 max N(c, pik, Cik)]

| -
= -3 min [(ce — mix)TCR (et = pix) + log [Cul] .

The total negative log likelihood can then be expressed
in the form of a mizture weighted Euclidean distance
between an observation and a mixture density:

dmwEe(ce, bi) = 132’»4 [dwE(ce, bix)] . (3)

The distance dw g(-) is the weighted Euclidean distance
for a single Gaussian defined in Equation 1.

To develop the projection measure for the mixture
densities, the effects of noise on each Gaussian in the
mixture can be considered independent, so the same
partitioning as used above can still be assumed. A
similar assumption on the effects of noise was used in
the noise removal system of Ephraim [1] with good re-
sults. As with the uni-modal Gaussian HMM’s, a scale
factor can be incorporated into the distribution func-
tion which compensates for the norm reduction caused
with added noise. This results in a modified likelihood
expressed as:

T 1

bi(e:) = M-lg}%xMN(c:,z\wu,Csk)

where Ay is the scale factor for the k** mixture of the
i** state in the model. The covariance matrix is not
scaled here because in practice it can distort the pa-
rameter space too much and result in poor estimates of
the variance. Weighting the covariance by A? and then
solving for the optimal A values resulted in very poor

‘recognition performance in preliminary testing in this

study and therefore was not pursued further.
Again, the log likelihood of the above probability is
needed (omitting the 1/M term):

log bi(c:) = log 13a<>%l./\/(c¢,z\wsk,cek)]

1 . -
= —5 mkln [(c, - Xk ;t.‘k)TC‘-*l (c, ad z\kﬂ,‘k) + log [Cgkl] .

From the orthogonality principle, the optimal value for
Ak can be found on a frame-by-frame basis by assuming
that each mixture is independent of the others:

-1
czTCik Hik

Ap = £ .
phC mix
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With these values for the A’s, the negative log like-
lihood can be expressed in the following equation and
will be referred to as the mizture weighted projection
measure:

dMuproj(Ce, b)) = min [dwproj(ct, bik)] - (4)

The distance dyproj(-) is the previously used weighted

‘projeetion measure for a single Gaussian function, de-

fined in Equation 2. -For-computational purposes, this
measure can be expressed in terms of the angle be-
tween the observation vector and the state mean in the
weighted Euclidean space of Cj;' (as defined in Equa-
tion 2).

Thus, it has been shown how the weighted pro-
jection measure can be integrated into mixture den-
sity HMM’s by simplying altering the likelihood scores
within an existing HMM recognition system. The re-
sults reported in this paper evaluate the effectiveness of
the developed measure for speaker independent recog-
nition in noise.

2.3. IMPLEMENTATION ISSUES

Several issues involved in the actual implementation
of the mixture weighted projection measure should be
pointed out.

1. The HMM model training is performed using only
the standard mixture Gaussian measure (as de-
fined in Equation 3).

2. Either the mixture weighted Gaussian measure or
the mixture weighted projection measure is used
for computing the likelihood scores in the Viterbi
algorithm.

3. When applied to an observation vector consist-
ing of both static and differential parameters, the
weighted projection measure is applied to each
feature set separately. That is,

dwproj (oty b:) = dwproj (ct ) bi,:tan’c) +

dwpr_'oj (6t ) bi,daha) )

where ¢; and & are the set of static and delta
cepstral or mel-cepstral parameters, respectively,
with corresponding state densities, b; szqric and
bi detta-

3. RECOGNITION EXPERIMENTS

Several recognition experiments were conducted to eval-
uate the effectiveness of the weighted projection mea-
sure with mixture density HMM’s for speaker indepen-
dent recognition in noise. A subset of the Texas In-
struments Isolated Digits Database was used consist-
ing of the digits “one”-“nine” and the word “oh” with

65 male speakers uttering each word twice. The HMM
word models were trained using noise-free speech from
40 male speakers for a total of 80 training tokens per
word. The test set consisted of the remaining 25 speak-
ers for a total of 50 tokens per word. Originally sampled
at 20 kHz, the speech was filtered and downsampled to
10 kHz. The speech analysis was performed on 30 msec
frames of speech every 15 msec using a Hamming win-
dow. Extracted parameters included 16 mel-cepstral
and 16 delta mel-cepstral parameters computed from
a 512-point DFT power spectrum [5]. Noisy speech
was simulated by adding artificially generated noise to
the speech waveforms at various global signal-to-noise
ratios.

The HMM models were left-to-right consisting of 5
states with 5 mixtures per state. Each mixture Gaus-
sian was defined by a mean vector of 16 mel-cepstral
and 16 delta mel-cepstral parameters with a correspond-
ing diagonal covariance matrix. Further details of this
system can be found in [7].

The following set of experiments evaluates the recog-
nition performance in various noise types, including
white, jittering white, and broadband colored noise.
The performance of three methods are evaluated: (1)
the standard procedure using the mixture Gaussian
likelihood measure (as defined in Equation 3) with noise-
free training, (2) the modified procedure using the mix-
ture weighted projection measure (as defined in Equa-
tion 4) with noise-free training, and (3) the limiting
performance of the system using the mixture Gaussian
measure with word models derived from noisy speech.

3.1. RECOGNITION IN WHITE NOISE

As can be seen in Figure 1, the mixture weighted pro-
jection measure significantly improved the recognition
performance over all SNR’s of added white noise. An
average of 10 dB in improvement was achieved, with
error rates reduced by 30 to 80 percent. For example,
at 15 dB SNR, recognition improved from only 61%
correct using the standard measure to 94.7% correct
using the developed measure. In addition, the perfor-
mance of the mixture weighted projection measure was
found to be comparable to that of training and testing

in noise for SNR’s of 15 dB and above.

3.2. RECOGNITION IN JITTERING NOISE

In this next set of experiments, the speech waveforms
were degraded by additive white noise with jittering
levels. This noise was generated by randomly varying
the levels of white noise from a global SNR of 0 to 20
dB on short-time intervals. This type of noise addresses
the problem of non-stationarity in a noisy environment
which the previous noise signal did not. The recog-
nition accuracy was 73.8% for the mixture weighted
projection measure as compared to only 30% using the
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mixture weighted Euclidean measure. This represents
a cut in the error rate by one-half. However, the ap-
proach did not perform as well as training the HMM
word models using speech degraded with jittering white
noise, which achieved 95.5% accuracy.

3.3. RECOGNITION IN COLORED NOISE

The last set of trials were conducted for speech plus
added broadband colored Gaussian noise. The additive
noise signal was generated from a 2-pole AR process
with filter coefficients a; = —0.45 and e = 0.55 (with
a spectral peak at 1 kHz). As can be seen in Figure 2,
the developed measure significantly outperformed the
standard measure. For an example, recognition accu-
racy at 15 dB SNR improved from 77.5% correct using
the standard measure to 94.2% correct using the mix-
ture weighted projection likelihood measure. Also, for
SNR’s of 15 dB and above, the performance of the mix-
ture projection measure with noise-free training com-
pared favorably with the limiting case of training and
testing in the same noisy environment.

4. SUMMARY

This paper extended the use of the weighted projection
measure developed in [5) to the case where the HMM
state densities are mixtures of Gaussian functions. The
performance of the developed likelihood measure was
evaluated for speaker independent digit recognition in
the presence of three noise types: white, jittering white,
and colored noise. In all cases, the mixture weighted
projection measure was found to significantly outper-
form the standard weighted Euclidean likelihood dis-
tance in recognition trials.

The proposed method offers several advantages over
other approaches. First, unlike many other methods,
the approach here does not require an explicit esti-
mate of the noise and is robust over a wide range of
SNR’s and noise types. Second, the approach offers a
relatively simple modification to existing HMM-based
systems which shows great improvements for recogni-
tion in noise. Last, the effectiveness of the enhance-
ment technique should translate to other recognition
tasks, such as keyword spotting and continuous speech
as well.
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ABSTRACT

Three methods of improving speech recognition in noise
are considered: energy thresholding, a noise-robust spec-
tral representation called IMELDA, and a set of noise-
robust spectral distortion measures. The spectral distor-
tion measures can be seen as normalizing the contrast in
the spectrum, a property which can be transferred to the
representation itself, making it computationally more
efficient. In speaker-independent alphabet recognition
tests in added steady white noise at various levels,
IMELDA is shown to outperform a weighted cepstrum
representation and be computationally more efficient.
With this material and with digits recorded in trucks at a
wide range of noise levels, performance is found to
depend strongly on the threshold level. Contrast normal-
ization is found to help, but only when the energy thres-
hold is far from its optimum level.

1. OVERVIEW OF TECHNIQUES

Techniques that have proved helpful for speech recogni-
tion in noise with systems using DTW or HMM with
continuous-valued parameters include the following:

i) Spectral Thresholding and Subtraction

For systems with filter-bank front-ends, thresholding M
sets a lower limit on the energy in each channel for both
the reference speech and the speech to be recognized
(the “‘test speech™). A threshold is applied explicitly or
implicitly in all systems using a log-energy representa-
tion, but ideally it should be close to the typical noise
level. This level therefore needs to be reasonably con-
stant and to be known approximately. Spectral subtrac-
tion [2] — subtraction of an estimate of the current
noise spectrum from the noisy speech spectrum — is
more dependent than thresholding on the noise being
constant and accurately known.

ii) Noise-Robust Acoustic Representations

A representation known as IMELDA (34], a linear
" transformation of the output of a filter-bank, has been
derived statistically from a combination of undegraded
data and data degraded with steady white noise and with

filtering causing spectral tilt changes. It has been shown
to improve recognition performance in both the unde-
graded and degraded conditions. There were reasons to
believe it capable of dealing with non-steady and non-
white noise of unknown level, but few direct tests of
this assertion had been published.

iii) Noise-Robust Spectral Distortion Measures

Certain spectral distortion measures [5] — loosely, dis-
tance measures — have been shown to be less affected
by the addition of steady white noise to the speech than
the standard Euclidean distance. A particular advantage
of these measures is that the noise level need not be
known.

This paper describes experiments in combining spectral
thresholding with IMELDA and with a technique in the
spirit of the noise-robust distance measures. The fron-
tier between acoustic representations and distance meas-
ures is not sharp; and to provide a computationally
efficient combination of IMELDA with the properties of
a noise-robust distance measure, we have transferred
those properties to the representation. The experiments
include tests with varying and non-white noise.

2. SPECTRAL CONTRAST NORMALIZATION

Mansour and Juang [S] pointed out that when white
noise is added to speech the relative values of (LPC)
cepstrum coefficients are less affected than their overall
magnitude as measured by their sum of squares or norm.
They also pointed out that frames with high norms are
less affected than those with low norms.

The cosine transform, being orthonormal, preserves the
norm of a frame of spectral data. The norm in the cep-
strum domain is therefore equal to the norm in the log
spectrum domain. The exclusion of Co from the cepstral
norm is equivalent to subtracting the mean from the log
spectrum. The norm is then equivalent to the spectral
variance across a frame, which we call spectral contrast.
White noise will tend to reduce the dynamic range
across the frame and hence the spectral contrast, but
will not affect the locations of spectral peaks, which
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tend to be reflected in the relative values of cepstral
coefficients. Since frames with low contrast correspond
to sounds such as voiceless fricatives with little spectral
structure, it is not surprising that they are particularly
badly affected by noise.

Mansour and Juang compared several distance measures
in speaker-dependent and independent tests. In one such
measure (which they called d,) the norm of the model
state centroid was adjusted to minimize its Euclidean
distance from the test frame to which it was being
maiched. In another (d3) each test frame and state cen-
troid was scaled to have a norm of unity; and in a third
(ds) the squared distance d, was scaled by the norm of
the test frame, so giving greater weight to the more reli-
able high-norm frames. All three outperformed the stan-
dard Euclidean distance on speech degraded with steady
white noise, with ds being the best.

Subsequently, Carlson and Clements [6] used d, in
speaker-dependent experiments with a mel-cepstrum
derived from a DFT and added dynamic parameters to
the static set.

3. CONTRAST NORMALIZED FRONT-END

IMELDA is computationally efficient because the matrix
multiplication needed to implement it is applied in the
front-end once per frame rather than in the comparison
process between the test frame and the model states,
which would entail many matrix multiplications per test
frame. Since the contrast-normalizing distance measure
d, used by Carlson and Clements requires knowledge of
both the test frames and the state centroids, the contrast
normalization and the cepstral weighting or IMELDA
transformation must be carried out as part of the state-
to-frame comparison process. The distance measure ds
is more attractive, since the contrast normalization and
the IMELDA matrix multiplication can be carried out in
the front-end, adding only a scaler multiplication to the
frame-to-frame comparison. However, with our special-
ized hardware designed for unweighted Euclidean dis-
tances, this slight complication would have serious
consequences.

This leaves only d3. Unfortunately, d, was the weakest
of the three metrics considered. Presumably, the prob-
lem is that if a frame has little spectral contrast, random
features will be blown up to have the same significance
as the clear formant structure in a vowel. We have
therefore introduced a modified contrast normalization,
which can be written:

,__cp
P =5re

(1)

where p is a cepstrum coefficient and p’ its normalized

equivalent, ¢ is the standard deviation of the cepstrum
coefficients in the frame, and ¢ is a constant.

For frames in which ¢ >> ¢ the values are set such that
the norm becomes c¢; whereas when ¢ << ¢ the values
are unchanged. This prevents the enhancement of
insignificant structure in low-contrast frames.

For ¢ = o the process reduces to the conventional non-
normalized representation; while for ¢ = 0 it becomes
d3. If the partial normalization represented by eqn. 1 is
well mctivated, an intermediate value of ¢ will give the
best results.

4. GENERAL EXPERIMENTAL DETAILS

All speech data used here was sampled at 8 kHz and
analyzed by a 17-channel mel-scale filter-bank with a
16ms frame rate.

The thresholding applied to the log energies was uni-
form across the 17 channels. In experiments in trucks
this absolute thresholding was augmented by a threshold
applied at a given number of dB below the peak energy
in the frame. This peak-related thresholding thus limits
the dynamic range allowed across the channels in each
frame.

It is not obvious how to apply spectral normalization to
parameter sets including dynamic spectral information.
Carlson and Clements appended their dynamic parame-
ters to the static ones before computing the contrast over
the extended set. After some preliminary experiments
we decided to compute the contrast normalization over
the C, to C,¢ static cepstral representation only and
derive our dynamic parameters by taking three-frame
differences between these normalized cepstra. Cg and
8C, were appended to the normalized parameters, giv-
ing a total of 34 parameters in all, which were then
weighted in a manner equivalent to using grand variance
weighting in the distance measure.

When an IMELDA representation was used, just 17
transformed parameters were derived from the 34 (possi-
bly normalized) cepstrum parameters.

The recognition process used one HMM per word in the
vocabulary. Each state was represented by a single cen-
troid and the state-to-frame comparison used an
unweighted Euclidean distance.

5. TESTS WITH ADDED WHITE NOISE

In these speaker-independent tests a downsampled subset
of a studio-recorded alphabet database widely distributed
in the UK. was used. The training set consisted of one
example of each letter from each of 26 male sp speakers
while the test set consisted of one example from each of
27 other male speakers.
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The first set of tests compared the performance of
IMELDA with that of weighted cepstrum representations
when steady white noise was added to the test speech.
The threshold was set at a level appropriate for noise-
free speech (labeled arbitrarily 0 dB) and no contrast
normalization was applied. The word models and the
variances for the cepstrum representation were derived
from the undegraded training data. The within-class
covariance data for the IMELDA transformation was,
however, derived from training data to which white
noise had been added to 15 dBSNR; together with the
same data filtered to apply a 6 dB/octave tilt as ‘well as
the undegraded data.

Table 1 shows the test results at various SNR levels.
With no noise added, IMELDA has slightly better per-
formance than the weighted cepstrum, even though it
needs only half as many parameters, halving the compu-
tational cost of the Euclidean distance calculation.

In the conditions with added noise and spectral tilt the
IMELDA representation shows a large performance
advantage. The advantage at 15 dB SNR is consistent
with that at the other noise levels, confirming that the
noise resistance of IMELDA is not limited to the level
presented in the derivation of the ransformation.

Table 1. Error rates in speaker-independent

alphabet recognition tests with low thresholds

test condition IMELDA Weighted
Transform Cepstrum

undegraded 10.2% 12.4%

6 dB/octave tilt 13.5% 29.3%

20 dB SNR 304% 60.7%

15 dB SNR 44 8% 78.2%

10 dB SNR 61.0% 87.9%

Because of its strong advantage in noise, experiments on
thresholding and contrast normalization were confined to
the IMELDA representation. The effect on an IMELDA
representation with the 0 dB threshold and partial con-
wrast normalization was then explored. (A small
difference in the way in which the IMELDA transform
was derived made these results slightly different from
those in Table 1) Fig. 1 shows the results at 15 dB
SNR, confirming the expectation that a finite, non-zero
value of the constant ¢, around ¢ = 3 here, would give
best results. Also as expected, partial contrast normaliza-
tion was not helpful on speech without added noise; but
it was not harmful either, with the recognition rate at

¢ =13 being virtually identical to that with no normali-
zation.
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Fig. 1 also shows the effect of contrast normalization on
speech at 15 dB SNR when the threshold level is optim-
ized for this condition: namely, 20 dB higher than
before. The performance at ¢ =3 and with no contrast
normalization is similar.

Fig. 2 shows the performance as a function of the thres-
hold level with speech at 15 dB SNR and without added
noise. When partial contrast normalization is applied at
¢ =3, optimum performance in noise-free conditions is
unchanged and that at 15 dB SNR is only slightly
improved. However, with such contrast normalization, a
relatively high level of recognition accuracy for the 15
dB SNR condition is maintained over a wider range of
threshold levels: that is, to thresholds below the
optimum level. In noise-free conditions, good perfor-
mance may also be extended to slightly higher threshold
levels.
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Fig. 1. Speaker-independent alphabet recognition error rates in
white noise at 15 d8 SNR as a function of the offset constant,
¢, in the contrast normalization. A value of infinity corresponds
to no contrast normalization. Results are shown at a low spec-
tral threshold value, 0 dB, and at 20 dB, the optimal value for
this SNR.

rors
40

1548 SNR

30

____ without contrast normalization
T with contrast normalization (¢ = 3)

noise free

Percentage recognition er
20

10

10 15 ZIO 25
Threshold volue (dB)
Fig. 2. Speaker-independent alphabet recognition error rates
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6. TESTS WITH SPEECH IN TRUCKS

Isolated digits were recorded by three male passengers
in both a light truck and a heavy truck during urban and
fast highway driving. A non-directional Motorola micro-
phone attached to the door pillar was used, resulting in
test-speech recordings with low and rapidly varying
SNRs. The reference speech was recorded in similar
conditions, but with a boom-mounted, noise-canceling
Shure SM-10 microphone as well as with the Motorola
microphone. The SM-10 recordings were largely noise
free, with SNRs around 20 dB greater than those of the
test speech. Single word models were made from all
conditions and the three speakers using the SM-10.
IMELDA transforms were then derived by matching the
simultaneously recorded Motorola recordings to these
models.

The noise spectrum averaged over the Motorola record-
ings was found to be flat, suggesting that contrast nor-
malization would be appropriate. With the energy thres-
hold set low, Fig. 3 confirms that the recognition perfor-
mance on the 375 test digits is helped by partial contrast
normalization. Despite the wide varigtion in noise levels
across the conditions, it was found that a single set of
absolute and peak-related thresholds could bring the
error rate down to zero, making further improvement
through contrast normalization impossible. Disappoint-
ingly, there was also no evidence that contrast normali-
zation broadened the range of threshold values over
which good results could be obtained. No cepstrum tests

were carried out on this data.
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Fig. 3. Multi-speaker isolated-digit recognition error rate in

moving trucks as a function of the offset constant, ¢, in the con-

trast normalization for an inappropriately low value of the

energy threshold. An infinite value of ¢ corresponds to no con-
trast normalization.

7. CONCLUSIONS

In noisy or distorting conditions an IMELDA spectra
representation has been confirmed to give better result
than a weighted cepstrum represemtation, and at-lowe .
computational cost. The tests with added white nois:
show that this advantage does not depend on the
IMELDA derivation’s having been exposed to data o.
the same noise level.

A partial contrast normatization technique has beer
described, which is compatible with unweightec
Euclidean distances and is therefore computationall:
efficient. This contrast normalization improved perfor-
mance in both steady white noise and in the time vary-
ing broadband noise in the truck recordings, but only
when the thresholding on the log power spectrum was
set at an inappropriate level. In the case of the stead
white noise, it also broadened the range of thresholc
values over which good performance could be obtained.
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ABSTRACT

In the context of speaker independent recognition of con-
nected words, this paper addresses several problems:

. Robustness against variations of both background noise
and frequency responses of microphones and transmission
lines is improved. This is achieved employing a high-pass
filter to reduce stationary or slowly varying pars of the
spectral components in the feature vectors.

. A method is proposed to improve the power of references
generated from isolated words by combining them with
duration models derived from a small set of connected
words.

- Experiments to improve recognition accuracy using speak-
er dependent adaptation of the HMM models’ transition
probabilities and of feature vectors are presented.

Results are given for a German corpus and the TINIST
connected digits corpus.

1. INTRODUCTION

Currently, a standard approach to achieve high-accuracy
speaker independent recognition is to increase feature
vector length using not only spectral or cepstral components,
but also their first and second order time derivatives, and
additionally use mixture density HMM state modelling with
up to 128 mixtures per state [1, 2]. For centralized ap-
plications with small vocabularies, e.g. for telephone service
automation, this is an adequate approach, as performance
and not costs need to be optimized. But for terminal ap-
plications like e.g. voice control for telephones or consumer
electronics devices, costs are an important factor favouring
low-complexity algorithms.

The mixture density approach is well suited to model both
dialectal pronounciation variants for speaker independency,
and coarticulation variants at word boundaries for utterances
containing connected words. But up to now, no solution
exists to introduce speaker adaptivity to HMM _mixture-
density models, as it is impossible to separate dialectal and
coarticulatory effects in the models. Such a separability may
be of advantage in dialogue-intensive applications (e.g. mail

ordering) for languages with several dialectal variants. in
such cases, confusions may be rather unlikely, if the
references can be focused to the dialect actually used, but
very likely, if all dialectal variants have to be considered.

For these two reasons, we experimented with a 'small’
recognition algorithm employing only single HMM densities.
Qur main goals were to find short, robust feature vectors,
and to examine speaker independence in combination with
speaker specific adaptation of both densities and transition
probabilities.

2. RECOGNITION ALGORITHM

The recognizer uses hidden Markov modelling (HMM) for
training, generating two templates (a male and a female) for
each word, with single continuous Laplacian densities and
unquantized observations. The number of states of the HMM
models is determined by the average length of the cor-
responding training utterances, using identical transition
probabilities at all states of the models. Fig. 1 sketches the
HMM models. Both training of the HMM models and recog-
nition use the Viterbi algorithm.

To calculate feature vectors, speech is sampled at 8 KHz,
weighted by a Hamming window of 32 ms length and FFT-
transformed. Adjacent windows overlap by 20 ms. The FFT-
based power density spectrum is smoothed and down-
sampled to 15 components equally spaced onthe mel scale.
Each component is replaced by its logarithm and normalized
to the average energy of the feature vector, with average

Fig 1: A section of the HMM word models, showing the
identical transition probabilities for all transition types
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energy being added to the feature vector as 16th com-
ponent. More details about the recognition algorithms may
be found in [3].

3. INCREASING ROBUSTNESS

To evaluate the recognizer's speaker independence and its
robustness against environmental changes or changes of
background noise, a corpus MMIX for German digits was
used. It consists of several subcorpora collected at five
locations all over Germany and Austria in order to cover
dialectal pronounciation variants. MMIX contains about 3000
digits spoken in isolation, and about 340 strings of three and
380 strings of seven digits spoken by about 80 male
speakers. Both versions of 2 ('zwo’, and 'zwei’ confusable to
‘drei’ = 3) are used.

Collecting environment ranged from unechoic chambers via
conference rooms to noisy office rooms. Different micro-
phones and recording facilities were used containing hand-
held microphones, telephone handsets, speaker phones, and
in some cases transmission via local or long distance tele-
phone lines. Average signal-to-noise ratio (SNR) was better
than 30 dB, covering a range from 25 to 40 dB.

As the number of multiple-digit strings was rather limited,
only isolated digits were used for training, saving all digit
strings for the evaluation. 26 speakers of MMIX were selec-
ted for training in such a way that all dialects and recording
conditions were covered representatively. Each speaker
uttered each digit three to four times, resulting in 60 to 80
training utterances per digit. This turned out to be a suf-
ficiently large training set, as further increasing the training
data size did not improve recognition accuracy. Furthermore,
no statistically significant difference was measured for
recognition results on training and test data set.

To control the influence of the inhomogeneity of the corpus,
a sub-corpus MPFH containing isolated digits spoken in a
quiet room by 56 male speakers from one region was
evaluated separately.

corpus / without " with
digit strin
Ieggth g high-pass filtering

errors /f| subs | del ins errors

% ! %

MPFH /1 1.41 7 2 9 0.97
MMIX /7 1 19.07 14 13 12 0.96
MMIX /7 3 11.53 9 1 0 0.97
MMIX 17 21.82 23 34 1 2.04

Tab. 1: Digit errors for speaker independent recognition with
unknown string length
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Using the homogeneous corpus MPFH both for training anc
testing, an acceptable digit error rate of 1.41% wa:
achieved. But for the inhomogeneous corpus MMIX, digi
errors rose to more than 10% (see Tab. 1). This increasec
error rate is mainly caused by the fact that single-densit
HMMs can model speech only for constant conditions, i.e.
for one kind of transfer function of the recording facility, anc
only for stationary background noise. Mixture density HMMs
are less sensitive to these effects, as they can use thei
vector pools to model environmental changes, too, at the
cost of significantly increased computational effort comparec
to single density HMMs. For this reason, our approach was
not to model different noise and transfer function conditions,
but to find means to reduce their influence from the signa
representation.

As most of the unwanted information is stationary and thus
producing offsets for the spectral components on either the
linear (for background noise) or the logarithmic (for transfer
functions) scale, several kinds of modulation frequency high-
pass filtering, among them e.g. delta spectrum, were exam-
ined. More information concerning these experiments may
be found in [4]. It turned out that filtering both the log. scalec
energy and the log. scaled spectal components over time
using a simple first order |IR high-pass of the form

Coew(N) = Cald(n) - cw(n'1) + 0.7 cm(n-1)

with a cut-off frequency of approximately 4.5 Hz improved
recognition most. As shown in Tab. 1, digit error rates for
MMIX are reduced by an order of magnitude to 1% resp. 2%
for the 7-digit strings. On the homogeneous control date
base MPFH, the improvement caused by high-pass filtering
is only from 1,4% to 1%, showing that high-pass filtering is
of little use to improve speech recognition under controliec
conditions, but is very effective 10 reduce variance by
environmental effects.

To find out what happens if the training conditions are signi-
ficantly different from the recognition conditions, the speaker
independent models generated from MMIX were testec
against a database AUTO containing digit strings from &
male speakers collected via handset in @ moving car at 120
km/h, with a background noise level of approximately 80 dB.
Digit error rates are given in Tab. 2.

For the single digits, the

SNR is about 5 dB string av. SNR} errors |,
below the worst training length /dB ! %
cases. But still, recog- [T
nition works excellent. AUTO /1 19 0.6

SNR has to be de-
creased by more than 12
dB compared to training
to increase digit error
rate to 3.7%. For com-
parison, without high-
pass filtering, recognition
on the AUTO corpus is

AUTO /3 13 3.7
AUTO /7 10 53

Tab. 2: Digit error rates for spea-
ker independent recognition or
the corpus AUTO collected in &
car
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impossible due to more than 100% insertions. So, high-pass
filtering not only improves robustness against variations
covered by training data, but also against variations beyond
the training data range.

To our opinion, the efficiency of high-pass filttering is caused
by three effects:

The frequency responses of recording environment and
transmission lines are cancelled, due to the fact that
logarithmically scaled spectral components are fitered. In
the logarithmic domain, frequency responses are converted
into a constant offset of the spectral components, being

removed completely by high-pass filtering.

in speech pauses and during low-energy pars of speech,
offects caused by stationary or slowly changing background
noise are reduced. This kind of background noise causes a
constant offset in the linear domain. After taking the loga-
rithm, it has neglegible effect on the high-energy parts of the
speech. But it produces an almost constant non-zero com-
ponent level, if the speech level is below the background
noise level. As this level changes with background noise
level, increased background noise usually results in lots of
insertions. High-pass filtering reduces the constant level to
zero and thus inhibits insertions in speech pauses.

At last, the very speaker dependent low-frequency parts of
the modulation spectrum are removed. It is known from
speaker independent isolated-words recognition {5}, that
normalisation of the spectral feature vectors with respect to
the long-term spectrum improves recognition accuracy. High-
pass filtering replaces long-term spectrum by a gliding short-
term spectrum which is not quite as effective as a long-term
spectrum, but still has benefits.

in the following sections, the TUNIST corpus will be used for
further experiments. The recognizer as described in this
section is used as a baseline system with a string error rate
of 5.8% as givenin Tab. 3, achieved with embedded training
using the complete specified training data set. This corre-
sponds roughly to a digit error rate of 1.8% which is rather
high in comparison to 2% for German 7-digit strings achie-
ved with isolated word training. Exept for the different
vocabularies, the main reason for this difference seems to
be that the T! digit strings are spoken rather coarticulated,
whereas most German strings are pronounced in aclear and
distinct fashion.

In 7], a very similar recognizer is described using the same
recognition algorithm and HMM models with one reference
per digit per gender, but using a feature extraction after 8]
its string error rates of 8.6% for Laplacian densities resp.
7.2%% for Gaussian densities correspond to 5.8% achieved
by our recognizer, showing that the 16 HP-filtered spectral
components perform better than 12 LPC-cepstral and 12
- delta-cepstrali coefficients plus one jog-energy and one delta
log-energy component.

4. POSITION DEPENDENT DURATION MODELLING

As our corpus of German connected digit utterances still is
limited, we have been looking for ways to improve our refer-
ences created from isolated words. A preliminary experiment
proved that better modelling of duration by modifying
transition probabilities significantly reduced the error rate.
Closer examination of spoken German digit strings showed
that a digit's length is strongly influenced by its position in a
phrase, i.e. whether the digit is spoken isolated, or in initial,
medial, or final position of an utterance.

To find out how much
HMM models with position
dependent length improve medial
recognition accuracy, the
TI/NIST digit string corpus
[6] was used to train refer-
ences according to a syn-
tax model given in Fig. 2,

with a male and a female Fig, 2: Syntax used to model
reference template per position dependent digit dura-
digit per arc. This syntax tions

model was developed for

the German language, where it nicely covers positional dura-
tion variations, but seems to be somewhat oversized for
American English. In the TUNIST corpus, only prepausal
lengthening effects were observed.

digit

final digit

single digit

Results are given in Tab. 3. Using the syntax after Fig. 210
train position dependent references, and for evaluation, the
string error rate is reduced from 5.8% to 4.6%.

On the other hand, using only references generated from
isolated digits, string error rate increases to 10.3%. To
reduce this error rate in cases when sufficient data is only
available for isolated-word training, initial, medial and final

str.error

rate / %
/4/, Gaussian densities 7.2
/4/, Laplacian densities 8.6
1 optimal reference / word / gender 5.8
4 opt. position dependent references 4.6
1 ref., trained only with single digits 10.3
4 ref. with position dependent duration 6.6
1 ref. + adapt. transition probabilities 5.2
1 ref. + adapt. feature vectors 47
1 ref. + adapt. transition probabilities 4.1

+ adapt. feature vectors

Tab. 3: String error rates for the TI/NIST corpus
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references were aligned with their corresponding single-word
references, and their feature vectors were replaced by the
closest-match feature vectors of the single-digit references.
The combination of position dependent duration models and
feature vectors generated from isolated words decreased
string error rate to 6.6%.

This result indicates that about half of the advantage of em-
bedded training over isolated-word training is gained by
better duration modelling of the references. The next step for
duration modelling will be to explore how to create reliable
duration models using only a small subset of the training
digit strings. This will aliow to quickly generate improved
references for connected-words recognition, based on exis-
ting training data spoken in isolated fashion, with only a
small connected-words training corpus 1o be newly coliected.

5. SPEAKER SPECIFIC ADAPTATION OF
DURATIONS AND FEATURE VECTORS

The following experiments concerning speaker adaptation
were done with no syntax and one reference per digit per
gender. The test database was ordered in such a way that
all utterances of a speaker were evaluated in sequence,
starting with the isolated digits, the other utterances follo-
wing in ascending string length. Adaptation is done using
only utterances that have already been recognized, but in a
supervised way, i.e. using the correct result and not the
recognition result.

The idea behind this procedure is that in applications requi-
ring a large amount of input data like e.g. mail ordering,
users will accept a start phase with rather slow data entry
and potential corrections to let the recognizer adapt to their
voice, but they want increased speed of data entry after the
start phase.

Whereas position dependent duration models relate to lan-
guage specific features, this experiment tried to model
speaker specific variations of duration, especially speaker
dependent average talking speed. In the HMM models used,
all states have identical transition probabilities, due to the
variable number of states per model. This fact allows easy
adaptation without supervision by simply changing transition
probabilities during recogition according to the recent
number of state skips and repeats.

Rules to adapt transition probabilities to talking speed were
derived in the following way: HMM models were generated
using the standard training. Then, the training data set was
subdivided into several classes with different average word
length. For each class, the transition probabilities of the
HMM models were retrained thus getting optimal probabili-
ties for the word length class. From the set of probabilities
for each transition class, a curve was derived using linear
regression, allowing caiculation of optimal transition proba-
bilities for any given word length.

Using the regression lines to adapt transition probabilities
after each test string, employing one reference per digit per

gender, and no syntax, string error rate was reduced from
the baseline 5.8% to 5.2%.

As the TINIST database covers a wide range of regional

accents, it was used to examine speaker specific adaptation
of feature vectors, too. )

Starting with speaker independent references for every new
speaker, the isolated digits were first recognized, and imme-
diately atter recognition used to adapt feature vectors of the
correct reference model to the speaker specific pronuncia-
tion. No adaptation was done using the multiple-digit strings.

For adaptation, speaker specific vectors got a weight of a
quarter of the reference vector that they were mapped to. As
there were two utterances of each isolated digit available per
speaker, the digit strings were recognized with adapted
references containing 36% speaker specific information plus
64% original speaker independent information per feature
vector. Feature vector adaptation reduced string error rate
from 5.8% to 4.7%.

Combining adaptive transition probabilities and feature
vector adaptation further reduced error rate to 4.1%.
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