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TECHNOLOGY

PREFACE

A great discovery solves a great problem but there is a grain of
discovery in the solution of any problem. Your problem may be
modest; but if it challenges your curiosity and brings into play
your inventive faculties, and if you solve it by your own means,
you may experience the tension and enjoy the triumph of discovery.

George Polya

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried
to write a book that assists students in discovering calculus—both for its practical
power and its surprising beauty. In this edition, as in the first two editions, I aim
to convey to the student a sense of the utility of calculus and to develop technical com-
petence, but I also strive to give some appreciation for the intrinsic beauty of the sub-
ject. Newton undoubtedly experienced a sense of triumph when he made his great
discoveries. I want students to share some of that excitement.

The emphasis is on understanding. Enough mathematical detail is presented so that
the treatment is precise, but without allowing formalism to become obtrusive. The in-
structor can follow an appropriate course between intuition and rigor by choosing to
include or exclude optional sections and proofs. Section 1.4, for example, on the precise
definition of the limit is an optional section. Although a majority of theorems are
proved in the text, some of the more difficult proofs are given in Appendix F.

The last several years have seen much discussion about change in the calculus cur-
riculum and in methods of teaching the subject. I have followed these discussions with
great interest and have conducted experiments in my own calculus classes and listened
to suggestions from colleagues and reviewers. What follows is a summary of how I
have responded to these influences in preparing the third edition. You will see that the
spirit of reform pervades the book, but within the context of a traditional curriculum.

For the past five years 1 have experimented with calculus laboratories for my own stu-
dents, first with graphing software for computers, then with graphing calculators, and
finally with computer algebra systems. Those of us who have watched our students use
these machines know how enlivening such experiences can be. We have seen from the
expressions on their faces how these devices can engage our students’ attention and
make them active learners.

Despite my enthusiasm for technology, I think there are potential dangers for mis-
using it. When 1 first started using technology, I tended to use it too much, but then I
started to see where it is appropriate and where it is not. Many topics in calculus can be
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VISUALIZATION

INCREASED EMPHASIS
ON PROBLEM SOLVING

explained with chalk and blackboard (and reinforced with pencil and paper exercises)
more simply, more quickly, and more clearly than with technology. Other topics cry out
for the use of machines. What is important is the appropriate use of technology, which
can be characterized as involving the interaction between technology and calculus. In
short, technology is not a panacea, but, when used appropriately, it can be a powerful
stimulus to learning.

This textbook can be used either with or without technology and I use three special
symbols to indicate clearly when a particular type of machine is required. The symbol
@ means that an ordinary scientific calculator is needed for the calculations in an exer-
cise. The icon E% indicates an example or exercise that requires the use of either a
graphing calculator or a computer with graphing software. (Section 3 in Review and
Preview discusses the use of these graphing devices and some of the pitfalls that can
arise. Section 4.6 is a good example of what I mean by the interaction between technol-
ogy and calculus.) The symbol is reserved for problems in which the full resources
of a computer algebra system (like Derive, Maple, or Mathematica) are required. In all
cases we assume that the student knows how to use the machine—we rarely give ex-
plicit commands.

Some of the exercises designated by Ei or &g are, in effect, calculus laboratories
and require considerable time for their completion. Instructors should therefore consult
the solutions manual to determine the complexity of a problem before assigning it.
Some of those problems explore the shape of a family of curves depending on one or
more parameters. (My students particularly enjoyed Exercise 40 on page 533. It was
difficult to get them to leave the computer lab because they were having so much fun
investigating the variety of fascinating shapes that these curves can have.) Other such
projects involve technology in very different ways. See, for instance, pages 539 (Bézier
curves), 588 (logistic sequences), and 482.

One of the themes of the calculus reform movement is the Rule of Three: Topics should
be presented numerically, graphically, and symbolically, wherever possible. I believe
that, even in its first and second editions, my calculus text has had a stronger focus on
numerical and graphical points of view than other traditional books. In the third edi-
tion I have taken this principle farther. See pages 114 and 591 for examples of how the
Rule of Three comes into play. You will also see that I have included more work with
tabular functions and more numerical estimates of sums of series.

I have added many examples and exercises that promote visual thinking. Given the
graph of a function, I think it is important for a student to be able to sketch the graph
of its derivative (page 116) and also to sketch the graph of an antiderivative (page 310)
in a qualitative manner. See pages 158, 167, 185, 306, 377, 386, and 465 for other exam-
ples of exercises that test students’ visual understanding.

In addition, I have added hundreds of new computer-generated figures to illustrate
existing examples. These are not just pretty pictures—they constantly remind students
of the geometric meaning behind the result of a calculation. I have also tried to pro-

vide more visual insight into formulas and their proofs (see, for instance, pages 126
and 242).

My educational philosophy was strongly influenced by attending the lectures of
George Polya and Gabor Szego when [ was a student at Stanford University. Both Polya
and Szego consistently introduced a topic by relating it to something concrete or famil-
iar. Wherever practical, I have introduced topics with an intuitive geometrical or physi-
cal description and attempted to tie mathematical concepts to the students’ experience.
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REAL WORLD APPLICATIONS

I found Polya’s lectures on problem solving very inspirational and his books How To
Solve It, Mathematical Discovery, and Mathematics and Plausible Reasoning have be-
come the core text material for a mathematical problem-solving course that I instituted
and teach at McMaster University. I have adapted these problem-solving strategies to
the study of calculus both explicitly, by outlining strategies, and implicitly, by illustra-
tion and example.

Students usually have difficulties in situations that involve no single well-defined
procedure for obtaining the answer. I think nobody has improved very much on Polya's
four-stage problem-solving strategy and, accordingly, I have included in this edition a
version of Polya’s strategy in Section 4 of Review and Preview, together with several
examples and exercises involving precalculus material. I have also rewritten the solu-
tions to certain examples in a more patient manner to make the problem-solving prin-
ciples more apparent. (See, for instance, Example 1 on page 168.)

The classic calculus situations where problem-solving skills are especially impor-
tant are related rates problems, maximum and minimum problems, integration, testing
series, and solving differential problems. In these and other situations I have adapted
Polya’s strategies to the matter at hand. In particular, I have retained from prior edi-
tions the two separate special sections devoted to problem solving: 7.6 (Strategy for In-
tegration) and 10.7 (Strategy for Testing Series).

In the second edition I included what 1 call Problems Plus after even-numbered
chapters. These are problems that go beyond the usual exercises in one way or another
and require a higher level of problem-solving ability. The very fact that they do not oc-
cur in the context of any particular chapter makes them a little more challenging. For
instance, a problem that occurs after Chapter 10 need not have anything to do with
Chapter 10. I particularly value problems in which a student has to combine methods
from two or three different chapters. In this edition 1 have added examples to the Prob-
lems Plus sections, not as solutions to imitate (there are no problems like them), but
rather as examples of how to tackle a challenging calculus problem. (See Example 1 on
page 319.) I have also added a large number of good new problems, including some with
a geometric flavor (see Problems 9, 10, 18, 27 after Chapter 2 and Problem 32 after
Chapter 10). [ have been testing these Problems Plus on my own students by putting
them on assignments, tests, and exams. Because of their challenging nature I grade
these problems in a different way. Here I reward a student significantly for ideas toward
a solution and for recognizing which problem-solving principles are relevant. My aim is
to teach my students to be unafraid to tackle a problem the likes of which they have
never seen before.

I have eliminated a few of the more arcane applications in the second edition and re-
placed them with substantial applied problems that I believe will capture the attention
of students. See, for instance, Problem 10 on page 379 (investigating the shape of a
can), Problem 7 on page 481 (positioning a shortstop to make the best relay to home
plate) and Problem 9 (choosing a seat in a movie theater) and Problem 10 (explaining
the formation and location of rainbows) on page 482. These are all extended problems
that would make good projects. They happen to be located in the Applications Plus sec-
tions, which occur after odd-numbered chapters (starting with Chapter 3) and are a
counterpart to the Problems Plus. (Again the idea is often to combine ideas and tech-
niques from different parts of the book.) But there are many new applied problems in
the ordinary sections of the book as well. (See, for instance, Exercise 54 on page 303
and Exercise 32 on page 186).



PREFACE xiii

OTHER CHANGES

ACKNOWLEDGMENTS
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TO THE STUDENT

Reading a calculus textbook is different from reading a
newspaper or a novel, or even a physics book. Don’t be dis-
couraged if you have to read a passage more than once in
order to understand it. You should have pencil and paper at
hand to make a calculation or sketch a diagram.

Some students start by trying their homework problems
and only read the text if they get stuck on an exercise. I sug-
gest that a far better plan is to read and understand a section
of the text before attempting the exercises. In particular,
you should study the definitions to see the exact meanings
of the terms.

Part of the aim of this course is to train you to think
logically. Learn to write the solutions of the exercises in a
connected step-by-step fashion with explanatory words and
symbols—not just a string of disconnected equations or
formulas.

The answers to the odd-numbered exercises appear at
the back of the book, in Appendix I. There are often sev-
eral different forms in which to express an answer, so if
your answer differs from mine, don’t immediately assume
you are wrong. There may be an algebraic or trigonometric
identity that connects the answers. For example, if the an-
swer given in the back of the book is V2 — 1 and you ob-
tain 1/(1 + ﬁ), then you are right and rationalizing the
denominator will show that the expressions are equivalent.

The symbol E means that an ordinary scientific calcula-
tor is needed for the calculations in an exercise. The icon
Eﬁ indicates an example or exercise that requires the use of
either a graphing calculator or a computer with graphing
software. (Section 3 in Review and Preview discusses the

use of these graphing devices and some of the pitfalls that
you may encounter.) The symbol @% is reserved for prob-
lems in which the full resources of a computer algebra sys-
tem (like Derive, Maple, or Mathematica) are required. You
will also encounter the symbol @ which warns you
against committing an error. I have placed this symbol in
the margin in situations where 1 have observed that a large
proportion of my students tend to make the same mistake.

Calculus is an exciting subject; I hope you find it both
useful and interesting in its own right.

l ANOTEONLOGIC

In understanding the theorems it is important to know the
meaning of certain logical terms and symbols. If P and g
are mathematical statements, then P = (J is read as “P im-
plies O” and means the same as “If P is true, then Q is
true.” The converse of a theorem of the form P => Q is the
statement Q = P. (The converse of a theorem may or may
not be true. For example, the converse of the statement “If
it rains, then I take my umbrella™ is “If I take my umbrella,
then it rains.”) The symbol <= indicates that two state-
ments are equivalent. Thus P <= @ means that both
P = @ and Q = P. The phrase “if and only if” is also
used in this situation. Thus “P is true if and only if Q is
true” means the same as P < . The contrapositive of a
theorem P => Q is the statement that ~Q = ~P, where
~P means not P. So the contrapositive says “If @ is false,
then P is false.” Unlike converses, the contrapositive of a
theorem is always true.
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B |n most sciences one generation
tears down what another has built and
what one has established another
undoes. In mathematics alone each
generation builds a new story to the
old structure.

"HERMANN HANKEL

REVIEW AND PREVIEW

The fundamental objects that we deal with in calculus are functions. So we first review
the basic ideas concerning functions, their graphs, and ways of combining them. We
list the main types of functions that occur in calculus and its applications and we re-
view the procedures for shifting, stretching, and reflecting their graphs. We then dis-
cuss the use of graphing calculators and graphing software for computers. This chapter
also contains a discussion of the principles of problem solving that will be useful
throughout the book. In the last section we give a preview of some of the principal
ideas of calculus. Although it is not absolutely necessary to read this last section, it
does provide an overview of the subject and a brief look at some of the reasons for
studying calculus.

FUNCTIONS AND THEIR GRAPHS

The area A of a circle depends on the radius r of the circle. The rule that connects r and
A is given by the equation A = 7rr”. With each positive number r there is associated
one value of A, and we say that A is a function of r,

The number N of bacteria in a culture depends on the time . If the culture starts
with 5000 bacteria and the population doubles every hour, then after ¢ hours the num-
ber of bacteria will be N = (5000)2'. This is the rule that connects  and N. For each
value of ¢ there is a corresponding value of N, and we say that N is a function of 1.

The cost C of mailing a first-class letter depends on the weight w of the letter. Al-
though there is no single neat formula that connects @ and C, the post office has a rule
for determining C when w is known.,

Each of these examples describes a rule whereby, given a number (r, ¢, or w), another

number (A4, N, or C) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function fis a rule that assigns to each element x in a set A exactly one
element, called f(x), in a set B.

We usually consider functions for which the sets A and B are sets of real numbers.
The set A is called the domain of the function. The number f(x) is the value of f at x
and is read “f of x.” The range of fis the set of all possible values of f(x) as x varies
throughout the domain, that is, { f(x) | x € A}.




