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preface

The purpose of the third edition, like that of the sec- fo the
ond, is to present new ideas, facts, and concepts that . .sw
have emerged in recent years. At the same time some third edition
older and useful material has been added as deemed
appropriate by the use of the book in course teaching.

The question of metric units has been given much
consideration. Although scientists and engineers today
use metric units universally, operations analysts and
the users of sonar equipments do not, preferring to
cling to the yard instead of the meter as the unit of
distance—not because of the natural human reluc-
tance to change, but because the range scales and man-
uals of existing equipments are calibrated in yards and
nautical miles. A curious benefit of the yard in practical
work is that the nautical mile can be taken with little
error to be an even 2 kiloyards (actually, it is 2.025),
but it is an unhandy, uneven number of kilometers
(1.853). While the yard has been retained as the unit of
distance, a section on the metric conversion of the so-
nar parameters has been included.

The basic plan of the book has remained the same:
to introduce the sonar equations after an introductory
chapter and then, at the end, to illustrate their use in
practical sonar problem solving after the many diverse
and perplexing phenomena hidden within them have
been explained in the intervening chapters.

Robert |. Urick
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preface

Underwater sound, as a specialized branch of science fo
and technology, has seen service in two world wars.
Although it has roots deep in the past, underwater the
sound, as a quantitative subject, may be said to be only ﬁrst
a quarter of a century old. Its modern era began with .o
the precise quantitative studies undertaken with great ~ €dlifion
vigor during the days of World War I1. In subsequent
years, its literature has grown to sizable proportions,
and its practical uses have expanded in keeping with
man’s continuing exploration and exploitation of the
seas.
This book attempts to summarize the principles of
underwater sound from the viewpoint of the engineer
and the practical scientist. It lies squarely in the middle
of the spectrum—between theory at one end and so-
nar technology at the other. Its intent is to provide a
summary of the principles, effects, and phenomena of
underwater sound and to give numerical quantitative
data, wherever possible, for the solution of practical
problems.
The framework of the book is the sonar equations—
the handy set of relationships that tie together all the
essential elements of underwater sound. The approach
is, after an introductory chapter, to state the equations
in a convenient form and then to discuss in subsequent
chapters each one of the quantities occurring in the
equations. The final chapter is largely devoted to prob-
lem solving, in which the use of the equations is Hlus-
trated by hypothetical problems taken from some of
many practical applications of the subject.
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In the desire to keep the book within sizable bounds, some aspects of under-
water sound have had to be slighted. One is the subject of transducers—the
conversion of electricity into sound and vice versa. Although transducer ar-
rays are discussed, only one sound source—the underwater explosion—is
dealt with at any length. It is felt that the design of electroacoustic transducers
for generating and receiving sound is truly an art in itself, with a technology
and theoretical background that deserves a book of its own. In addition, much
of the basic theory of underwater sound is confined to references to the
literature, and engineering matters of sonar hardware are omitted entirely.
Although the book will therefore appeal neither to the theoretician nor to the
hardware builder, it hopes to cover the vast middle ground between them and
be of interest to both the design engineer and the practical physicist. It is
based on a course given for several years at the Catholic University, Washing-
ton, D.C., and at Westinghouse Electric Co., and the Martin Co. in Baltimore.

The book owes a great deal to my colleagues at the Naval Ordnance Labora-
tory for many discussions and helpful criticism. In particular, Mr. T. F. John-
ston, chief of the acoustics division, has been a constant encouragement and
stimulant in the long and arduous task of writing the book. My students have
been helptul too in providing me with a receptive and critical audience for
whatever is original in the presentation.

Robert J. Urick
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the nature

Of all the forms of radiation known, sound travels ﬂf sonar
through the sea the best. In the turbid, saline water of

the sea, both light and radio waves are attenuated to a

far greater degree than is that form of mechanical en-

ergy known as sound.

Because of its relative ease of propagation, people
have applied underwater sound to a variety of pur-
poses in their use and exploration of the seas. These
uses of underwater sound constitute the engineering
science of sonar, and the systems employing underwa-
ter sound in one way or another are sonar systems.

Sonar systems, equipments, and devices are said to
be active when sound is purposely generated by one of
the system components called the projector. The sound
waves generated by the projector travel through the
sea to the target, and are returned as sonar echoes to a
hydrophone, which converts sound into electricity. The
electric output of the hydrophone is amplified and
processed in various ways and is finally applied to a
control or display device to accomplish the purpose for
which the sonar set was intended. Active sonar systems
are said to echo-range on their targets.

Passive or listening sonar systems use sound radi-
ated (usually unwittingly) by the target. Here only one-
way transmission through the sea is involved, and the
system centers around the hydrophone used to listen
to the target sounds. Communication, telemetry, and
contro] applications employ a hybrid form of sonar
system using a projector and hydrophone at both ends
of the acoustic communication path.
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1.1 Historical Survey

Although the “modern age” of sonar may be said to date back more than a
quarter of a century to the start of World War 11, sonar has its origins deep in
the past. One of the earliest references to the fact that sound exists beneath
the surface of the sea, as well as in the air above, occurs in one of the note-
books of that versatile, archetypal engineer, Leonardo da Vinci. In 1490, two
years before Columbus discovered America, he wrote (1)*: “If you cause your
ship to stop, and place the head of a long tube in the water and place the outer
extremity to your ear, you will hear ships at a great distance from you.”
Although this earliest example of a passive sonar system has the enviable
merit of extreme simplicity, it does not provide any indication of direction
and is insensitive as a result of the great mismatch between the acoustic prop-
erties of air and water. Yet the idea of listening to underwater sounds by
means of an air-filled tube between the sea and the listener’s ear had wide-
spread use as late as World War I, when, by the addition of a second tube
between the other ear and a point in the sea separated froin the first point, a
direction could be obtained and the bearing of the target could be deter-
mined.

Perhaps the first quantitative measurement in underwater and sound oc-
curred in 1827, when a Swiss physicist, Daniel Colladon, and a French mathe-
matician, Charles Sturm, collaborated to measure the velocity of sound in
Lake Geneva in Switzerland. By timing the interval between a flash of light
and the striking of a bell underwater, they determined the velocity of sound to
a surprising degree of accuracy.

Later on in the nineteenth century, a number of famous physicists of the
time indirectly associated themselves with underwater sound through their
interest in the phenomenon of “transduction”—the conversion of electricity
into sound and vice versa (2). Jacques and Pierre Curie are usually credited
with the discovery in 1880 of piezoelectricity—the ability of certain crystals,
when stressed, to develop an electric charge across certain pairs of crystal
faces. Other physicists had dabbled in the subject before this. Charles Cou-
lomb is said to have speculated on the possibility of producing electricity by
pressure, and Wilhelm Rontgen wrote a paper on the electric charge appear-
ing on the various faces of crystals under stress. The counterpart of piezoelec-
tricity as a transduction process is magnetostriction, wherein a magnetic field
produces a change in the shape of certain substances. The earliest manifesta-
tion of magnetostriction was the musical sounds that were heard when, about
1840, the current in a coil of wire was changed or interrupted near the poles
of a horseshoe magnet. James Joule, in the 1840s, carried out quantitative
measurements on the change of length associated with magnetostriction, and
is commonly credited with being the discoverer of the effect.

* The parenthetical numbers throughout the text denote numbered references to the
literature in a list of references at the end of each chapter.
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These studies, and those of others in the 1840s and 1850s, were the founda-
tion for the invention of the telephone, for which a long-disputed patent was
issued in 1876 to A. G. Bell. Another nineteenth-century invention that was
the mainstay of sonar systems before the advent of electronic amplifiers was
the carbon-button microphone, a device which became the earliest, and still
probably the most sensitive, hydrophone for underwater sound.

About the turn of the century there came into being the first practical
application of underwater sound. This was the submarine bell, used by ships
for offshore navigation. By timing the interval between the sound of the bell
and the sound of a simultaneously sent blast of a foghorn, a ship could
determine its distance from the lightship where both were installed. This
system was the impetus for the founding of the Submarine Signal Company
(now part of Raytheon Mfg. Co.), the first commercial manufacturer of sonar
equipment in the United States. The method was never in widespread use and
was soon replaced by navigation methods involving radio—especially radio
direction finding.

Another pre—World War I achievement was the embryonic emergence of
the first schemes for the detection of underwater objects by echo ranging. In
1912, five days after the “Titanic” collided with an iceberg, L. F. Richardson
filed a patent applicaiton with the British Patent Office for echo ranging with
airborne sound (2). A month later he applied for a patent for its underwater
analog. These ideas involved the then-new features of a directional projector
of kilohertz-frequency sound waves and a frequency-selective receiver de-
tuned from the transmitting frequency to compensate for the doppler shift
caused by the motion of the echo-ranging vessel. Unfortunately, Richardson
did nothing at the time to implement these proposals. Meanwhile, in the
United States, R. A. Fessenden had designed and built a new kind of moving-
coil transducer for both submarine signaling and echo ranging and was able,
by 1914, to detect an iceberg at a distance of 2 miles. Fessenden “oscillators”
operating at frequencies near 500 and near 1,000 Hz are said (3) to have been
installed on all United States submarines of the World War I period to enable
them to signal one another while submerged. They remained in use until
recently as powerful sinusoidal sound sources for research purposes.

The outbreak of World War I in 1914 was the impetus for the development
of a number of military applications of sonar. In France a young Russian
electrical engineer, Constantin Chilowsky, collaborated with a distinguished
physicist, Paul Langevin, in experiments with a condenser (electrostatic) pro-
Jector and a carbon-button microphone placed at the focus of a concave
mirror. In spite of leakage and breakdown troubles caused by the high volt-
ages needed for the projector, by 1916 they were able to obtain echoes from
the bottom and from a sheet of armor plate at a distance of 200 meters. Later,
in 1917, Langevin turned to the piezoelectric effect and use a quartz-steel
sandwich to replace the condenser projector. He also employed one of the
newly developed vacuum-tube amplifiers—probably the first application of
electronics to underwater sound equipment. For the first time, in 1918,
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echoes were received from a submarine, occasionally at distances as great as
1,600 meters. Parallel British investigations with quartz projectors were con-
ducted by a group under R. W. Boyle. The word “asdic” was coined at the
time to refer to their then highly secret experiments.* World War I came to a
close, however, before underwater echo ranging could make any contribution
to meet the German U-boat threat.

In the meantime, extensive use had been made of Leonardo’s air tube for
passive listening, improved by the use of two tubes to take advantage of the
binaural directional sense of a human observer. The MV device consisted (5)
of a pair of line arrays of 12 air tubes each, mounted along the bottom of a
ship on the port and starboard sides and steered with a special compensator.
Surprising precision was achieved in determining the bearing of a noisy tar-
get; an untrained observer could find the bearing of a distant target to an
accuracy of %£°. Another development of the time (5) was a neutrally buoyant,
flexible line array of 12 hydrophones called the “eel,” which could easily be
fitted to any ship and could be towed astern away from the noisy vessel on
which it was mounted. All in all, some three thousand escort craft were fitted
with listening devices of various kinds in World War 1. By operating in groups
of two or three and using cross bearings, they could obtain a “fix” on a
suspected submarine contact.

In 1919, soon after the end of World War I, the Germans published the
first scientific paper on underwater sound (6). This paper described theoreti-
cally the bending of sound rays produced by slight temperature and salinity
gradients in the sea, and recognized their importance in determining sound
ranges. Longer ranges were predicted in winter than in summer, and the
prediction was verified by measurements of transmission ranges in all seasons
of the year in six shallow-water areas, including two off the east coast of the
United States made presumably before the entry of this country into the war
in 1917. This paper was far ahead of its time and remained unrecognized for
over 60 years. It is testimony to the excellence of German physics in the early
years of the present century.

The years of peace following World War I saw a steady, though extremely
slow, advance in applying underwater sound to practical needs. Depth sound-
ing by ships under way was soon developed, and by 1925, fathometers, a word
coined by the Submarine Signal Company for their own equipment, were
available commercially in both the United States and Great Britain. The
search for a practical means of echo ranging on submarine targets was con-
ducted in the United States by a handful of men under H. C. Hayes at the
Naval Research Laboratory. The problem of finding a suitable sound projec-
tor in echo ranging was solved by resorting to magnetostrictive projectors for
generating the required amount of acoustic power. Also, synthetic crystals of

* According to A. B. Wood (4), the word “asdic” was originally an acronym for “anti-
submarine division—ics” from the name of the group which did the work. The suffix
had the same significance as it does in the words “physics,” “acoustics,” etc. For many years
thereafter, the word “asdic” was used by the British to refer to echo ranging and echo-
ranging sonar systems generally.
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Rochelle salt began to replace scarce natural quartz as the basic piezoelectric
material for piezoelectric transducers. During the interwar period sonar re-
ceived a great practical impetus from advances in electronics, which made
possible vast new domains of amplifying, processing, and displaying sonar
information to an observer.

Ultrasonic frequencies, that is, frequencies beyond the region of sensitivity
of the unaided human ear, came to be used for both listening and echo
ranging and enabled an increased directionality to be obtained with projectors
and hydrophones of modest size. A number of small, but vital, components of
sonar systems were added during this period, notably the development by the
British of the range recorder for echo-ranging sonars to provide a “memory”
of past events and the streamlined dome to protect the transducer on a mov-
ing ship from the noisy, turbulent environment of water flow past a moving
vessel. By 1935, several fairly adequate sonar systems had been developed,
and by 1938, with the imminence of World War 11, quantity production of
sonar sets started in the United States. By the time the war began, a large
number of American ships were equipped for both underwater listening and
echo ranging. The standard echo-ranging sonar set for surface ships was the
QC equipment. The operator searched in bearing with it by turning a hand-
wheel and listening for an echo with headphones or loudspeaker. If an echo
was obtained, its range was noted by the flash of a rotating light or from the
range recorder. Submarines were fitted with JP listening sets, consisting of a
rotatable horizontal line hydrophone, an amplifier, a selectable bandpass
filter, and a pair of headphones. The cost of this equipment with spares was
$5,000! With such primitive sonar sets, the Battle of the Atlantic against the
German U-boats was engaged and, eventually, won.

But from a scientific standpoint, perhaps the most notable accomplishment
of the years between World War I and World War 11 was the obtaining of an
understanding of the vagaries of sound propagation in the sea. Early ship-
board echo-ranging sets installed in the late twenties and early thirties were
mysteriously unreliable in performance. Good echoes were often obtained in
the morning, but poor echoes, or none at all, were obtained in the afternoon.
When it became clear that the sonar operators themselves were not to blame
and that the echoes were actually weaker in the afternoon, the cause began to
be sought in the transmission characteristics of the seawater medium. Only
with the use of a special temperature-measuring equipment did it become
evident that slight thermal gradients, hitherto unsuspected, were capable of
refracting sound deep into the depths of the sea and could cause the target to
lie in what is now known as a “shadow zone.” The effect was called by E. B.
Stephenson the “afternoon effect.” As a means to indicate temperature gradi-
ents in the upper few hundred feet of the sea, A. F. Spilhaus built the first
bathythermograph in 1937; by the start of World War I, every naval vessel
engaged in antisubmarine work was equipped with the device. During this
period also, a clear understanding was gained of absorption of sound in the
sea, and remarkably accurate values of absorption coefficients were deter-
mined at the ultrasonic frequencies 20 to 30 kHz then of interest, These and
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other achievements of the interwar period are described in a paper by Klein
(7).

On both sides of the Atlantic, as in World War I, the World War 11 period
was marked by feverish activity in underwater sound. In the United States, a
large group of scientists organized by the National Defense Research Com-
mittee (NDRC) began investigations of all phases of the subject.* Most of our
present concepts as well as practical applications had their origins in this
period. The acoustic homing torpedo, the modern acoustic mine, and scan-
ning sonar sets were wartime developments. Methods for quick calibration of
projectors and hydrophones began to be used, and an understanding of the
many factors affecting sonar performance that are now summarized in the
sonar equations was gained. Factors such as target strength, the noise output
of various classes of ships at different speeds and frequencies, reverberation

in the sea, and the recognition of underwater sound by the human ear were -

all first understood in a quantitative way during the years of World War 1I.
Indeed, in retrospect, there is little of our fund of underwater acoustic knowl-
edge that cannot be traced, in its rudiments, to the discoveries of the wartime
period.

The Germans must be given credit for a number of unique accomplish-
ments. One was the development of Alberich, a nonreflecting coating for
submarines. It consisted of a perforated sheet of rubber cemented to the hull
of a submarine and covered by a solid, thin sheet of rubber to keep water out
of the air-filled perforations. This coating was effective only over a limited
range of depth and frequency, and could not be kept bonded to the hull for
long periods under operating conditions. Another innovation was the use of
flush-mounted arrays for listening aboard surface ships. An array of this
kind—given the designation GHG for grippen-hiort-gerdt or “array listening
equipment”—was installed on the cruiser “Prinz Eugen” and used with some
success (8).

According to Batchelder (9), the word “sonar” was coined late in the war as
a counterpart of the then-glamorous word “radar” and came into use later
only after having been dignified as an acronym for sound navigation and
ranging!

Underwater acoustics is now a mature branch of science and engineering,
with a vast literature and a history of achievement that has only briefly been
touched on in the foregoing. The historically minded reader may be referred

to a number of papers on the history of sonar through the close of World War
I (10-14).

1.2 Postwar Developments

The years since World War II have seen some remarkable advances in the
exploitation of underwater sound, for both military and nonmilitary pur-

* At the end of the war the findings of that part of NDRC engaged in underwater sound
were summarized in an admirable series of some 22 reports called the NDRC Division 6
Summary Technical Reports.
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