SO BRINCH HANSEN
ON PASCAL COMPILERS

PER BRINCH HANSEN

BRINCH HANSEN
ON PASCAL COMPILERS

- PER BRINCH HANSEN .~

PR\ENTICE’-HALL, INC., Englewood Cliffs, New Jersey 07632

CONTENTS

1 WHAT A COMPILER DOES 1

2 A PASCAL SUBSET 6

2.1 Pascal Minus 6

2.2 Vocabulary 10

2.3 Syntactic Rules 12
2.4 Grammar 15

3 COMPILER ORGANIZATION 17

A Personal Computer 17
Single-Pass Compilation 18
Multipass Compilation 19

The Pascal Minus Compiler 22
Errors and Failures 24

w 00 w0 0 0
Ol O

CONTENTS
LEXICAL ANALYSIS

Source Text 28
“Intefmédiate Code 29
Scarhing 31
Searching 36
Symbol Table 45
4.6 Testing 51

B
[+ Ul S

SYNTAX ANALYSIS

5.1 Symbol Input 59

5.2 Parser Construction 61
5.3 First Symbols 67

5.4 Follow Symbols 70

5.5 Grammar Restrictions 73
5.6 Recursion 78

5.7 Testing 81

5.8 Error Recovery 83 .

SCOPE ANALYSIS

Blocks 95

Scope Rules 97

Compilation Method 100

Data Structures 102 - -
Algorithms 103

Testing 108

Sconoae
[S 0 Ll S

w & t’l‘ LR

r

TYPE ANALYSIS

Kinds of Objects 110
Standard Types 112
Constants 113
Variables 116
Arrays 122

Records 125
Expressions 130
Statements 133
Procedures 134
Object Records 140
Testing 141

NNNNNN9NNa2
O 00 IO N
- O

A PASCAL COMPUTER -

8.1 An Ideal Computer 144
8.2 The Stack 146
8.3 Variable Access 151

28

59

110

144

8.4
8.5
8.6
8.7
8.8
8.9

CONTENTS

Expression Evaluation 160
Statement Execution 169
Procedure Activation 173
Program Execution 177
Code Syntax 178

Testing 179

8.10 A Traditional Computer 179

9 CODE GENERATION .

Operation Parts 183
Variable Addressing 184
Expression Code 189
Statement Code 193
Procedure Code 200
Code Optimization 204
Testing 210

10 PERFORMANCE

10.1 Compiler Size 211
10.2 Compilation Speed 214

Appendix A A COMPLETE COMPILER

Al
A2
A3
A4
A5
A6

Administration 218
Scanner 221
Parser 228
Assembler 255
Interpreter 260
Test Programs 271

Appendix B A COMPILER PROJECT

B.1 The PL Language 282

B.2 Project Phases 288

B.3 The PL Interpreter 290
REFERENCES

SOFTWARE DISTRIBUTION

INDEX

183

211

217

281

297
301

303

WHAT A COMPILER DOES

A program written in a programming language is a piece of text; for
example,

program P;
var x: integer;
begin x := 1 end,

This Pascal program describes the following sequence of actions:

(1) Allocate storage for a variable x.
(2) Assign the value 1 to x.

(3) Release the storage space of x.

Before a computer can execute this program, it must be translated from
Pascal into machine code. The machiné code is a sequence of numbers that
instruct the computer to perform the actions. In this example, the machine
code might be the following numbers:

2 WHAT A COMPILER DOES » Chap. 1

241251

37 3

31

38

7
Each line defines a computer instruction consisting of an operation code pos-
sibly followed by some arguments. The code becomes a bit more readable if
we replace the operation codes by readable names and enclose the arguments
in parentheses:

Program(1, 2, 5,1)
LocalVar(3) .
Constant(1)
SimpleAssign
EndProgram

A system program, known as a compiler, performs the translation from
Pascal to machine code. Compilers play a crucial role in software develop- .
ment: They. enable you to ignore the complicated instruction sets of com-
puters and write programs in a readable notation. Compilers also detect
numerous programming errors even before you begin testing your programs.

However, you can ignore the code generated by a compiler only if you
know that the compiler never makes a mistake! If a compiler does not
always work, programming becomes extremely complicated. In that case,
you will discover that the Pascal report no longer defines exactly what your
program does. This is obviously unacceptable.

So the following design rule is essential:

Rule 1.1: '
A compiler must be error-free.

-
This requirement is quite a challenge to the compiler designer when you con-
sider that a compiler is a program of several thousand lines. Compiler writing
forces you to apply very systematic methods of program design, testing, and
documentation. It is one of the best educational experiences for a software
engineer.

The input to a compiler is a program text. The first task of the compiler
is to read the program text character by character and recognize the symbols
of the language. The compiler will, for example, read the characters

program

Chap. 1 WHAT A COMPILER DOES ' 3

and recognize them as the single word program. At this point, the compiler
views the previous program example as the following sequence of symbols:

program name P semicolon
var name x colon name integer semicolon
begin name x becomes numeral 1 end period

This phase of compilation is called lexical analysis. (The word lexical means
“pertaining to the words or vocabulary of a language.”)

The next task of the compiler is to check that the symbols occur in the
right order, For example, the compiler recognizes the sentence

x:=1
as an assignment statement. But if you write
x=1

instead, the compiler will indicate that this is not a valid statement. This
phase of compilation is called syntax analysis. (The word syntax means “the
structure of the word order in a sentence.”) ,

The syntax analysis is concerned only with the sequence of symbols in
sentences. As long as a sentence consists of a name followed by the := sym-
bol and an expression, it will be recognized as an assignment statement. But
even though the syntax of the statement is correct, it may still be meaning-
less, as in the following example: »

y=1
which refers to an undefined variable y. The assignment statement;
x = true

is also meaningless because the variable x and the value true are of different
types (integer and Boolean). The phase of compilation that detects meaning-
less sentences such as these is called semantic analysis. (The word semantics
means “the study of meaning.”’)

As these examples show, the compiler must perform two kinds of se-
mantic checks: First, the compiler must make sure that the names used in a
program refer to known objects: either predefined standard objects, such as
the type integer, or objects that are defined in the program,-such as the
variable x. The problem is to recognize a definition such as

var x: integer;

4 ' WHAT A COMPILER DOES Chap. 1

and determine iy which part of the program the object x can be used. This
task is called scdpe analysis. (The word scope méans ‘“the extent of applica-
tion.””) During this part of the compilation, the compiler will indicate if the
program uses undefined names, such as y, or introduces ambiguous names in
definitions, such ;

var x: integer; x: integer;

Second, the compiler must check that the operands are of compatible
types. This task is called type analysis.

When you compile a new program for the first time, the compiler
nearly always finds some errors in it. It will often require several cycles of
editing and recompilation before the compiler accepts the program as for-
mally correct. So, in-designing a compiler, you must keep in mind that most
of the time it will be used to compile incorrect programs!

If there are many errors in a program, it is convenient to output the
error messages in a file which can be inspected or printed after the compila-
tion. However, the compiler will be able to complete this file and close it
properly only if the compilation itself terminates properly. If the compila-
tion of an incorrect program causes a run-time failure, such as an arithmetic
overflow, the error messages will be lost and you will have to guess what
happened

To avoid this situation, we must impose the following design
requirement:

Rule 1.2: o
A compilation must always terminate, no. matter what the input looks
like.

The easiest way to satisfy this requirement is to terminate the compilation
when the first error has been detected. The user must then remove this error
and recompile the program to find the next error, and so on.

Since a compilation may take several minutes, this method is just too
" slow. To speed up the program development process, we must add another
design requirement:

Rule 1.3: .
A compiler should attempt to find as many errors as possible during a
single compilation.

As you will see later, this goal is not easy to achieve.
There is one exception to the rule that a compilation must always ter-
minate: If a gr‘qg'ram is so big that the compiler exceeds the limits of its

Chap. 1 * WHAT A COMPILER DOES 5

tables, the only reasonable thing to do is to report this and stop the compila-
tion. This is called a compilation failure.

- If the compiler finds no formal errors in a program, it proceeds to the
last phase of compilation, code generation. In this phase, the compiler deter-
mines the amount of storage needed for the code and variables of the pro-
gram and emits final instructions. The main difficulty is that most computers

have very unsystematlc instruction sets that are ill suited for automatic code
generation.

These, then, are the major tasks of a compiler:

Lexical analysis
Syntax analysis
Scope analysis
Type analysis
Code generation

Each of these tasks will be discussed in a separate chapter.

A PASCAL SUBSET

The compiler described in this book accepts a subset of the program-
‘ming language Pascal known as Pascal— (“Pascal Minus”). This chapter de-
scribes Pascal— and defines the syntax of the language. I assume that you
already know Pascal. '

2.1 PASCAL MINUS

The Boolean and integer types are the only simple types in Pascal—.
These types are standard types. The language does not have characters, reals,
subrange types, or enumerated types.

The structured types are array types and record types. Packed types
and variant records are not supported, nor are sets, pointers, and file types.

Every type has a name: either a standard name (integer or Boolean) or a
name introduced by a type definition: for example,

type .
table = array [1 .. 100] of integer; ,
stack = record contents: table; size: integer end;

Sec. 2.1 PASCAL MINUS ’ .7

A variable definition, such as
var A: table;
is correct, but the following is not:
var A: array [1..100] of integer;

since it introduces an array type that has no name.
A type definition cannot rename an already existing type, as in the
example:

type number = integer;

Most operations on a pair of operands are valid only if the operands are
of the same type. Since every type has a name (and one name only!), it is
tempting to suggest that two types are the same if, and only if, they have the
same name. A name can, however, be defined as a type name in one block
and as a variable name in another block. When this is taken into account, we
end up with the following rule: Two types are the same only if they have the
same name and the same scope. In Pascal, the rules for type compatibility
are more complicated [IEEE, 1983].

Constant definitions, such as

const max = 100; on = true;
introduce names for constants. | .

In Pascal-—, all constants have simple types. There are no string con-
St;ants\.’ariable definitions have the same'form as in Pascal; for example, .
var X, y: integer; yes: Boolean;lifo: stack;

The relational operators
< = 0> L= <> o>=
can be appliéd only to operands of simple types.
Pascal — includes assignment statements, procedure statements, if state-

ments, while statements, and compound statements. Following are some
- examples of these statements.

8 A PASCAL SUBSET Chap. 2

x=x—1
search(x, yes, i)
if x>0then x:=x—1
while index < limit do
if A[index] = value then limit := index
else index := index +1 -
begin
lifo.size :=lifo.size + 1;

lifo.contents[lifo.size] := x
end

There are no goto statements (or labels), no case or repeat statements,
and no for or with statements.

Pascal— supports nested procedures with value parameters and variable
parameters. A procedure cannot be used as a parameter of another proce-
dure, and functions cannot be defined. '

The only standard procedures are

read(x)
which inputs an integer value and assigns it to a variable x, and
write(e)

which outputs an integer value given by an expression e.
Algorithm 2.1 illustrates most of the features of Pascal —.

To summarize, Pascal— includes the following featpres of Pascal:

Standard types (Boolean, integer)
Standard procedures (read, write)
Constant definitions

Type definitions (arrays, records)
Variable definitions

Expressions

Assignment statements
Procedure statements

If statements

-While statements

Compound statements

Procedure definitions

Sec. 2.1 PASCAL MINUS

program ProgramExample;
const n = 100;
type table = array [1..n] of integer;"
var A: table; i, x: integer; yes: Boolean;
procedure search (value: integer;
var found: Boolean; var index: integer);
var limit: integer; -
begin index-:= 1; limit := n;
while index < limit do
if A[index] = value then limit := index
else index = index + 1;
found := A[index] = value
end;
begin {input table} i := 1;
while i <=ndo v
begin read(A[i]);i:=i+ 1 end;
{test search} read(x) ;
while x <> 0 do
begin search(x, yes, i) ;
write(x) ;
if yes then write (i) ;
read(x) - :
end
end.

Algorithm 2.1

and excludes the following concepts:

Char and real
Subrange types
Enumerated types
Variant records

Set types

Pointer types -

File types '
Packed types
Nameless i;ypes
Renamed types
Function definitions
Procedural parameters

10 A PASCAL SUBSET Chap. 2

Goto statements (and labels)
Case statements

Repeat statements

For statements

With statements

Pascal— has enough features to illustrate all the problems of compila-

tion. The omitted features add more detail to a compller, but the added logic
is basically ‘“more of the same.’

2.2 VOCABULARY

The vocabulary of a natural language like English is words. The vocabu-
lary of a programming language like Pascal— is symbols such as

begin sort 13 =
Pascal— has four kinds of symbols, called word symbols, names,
numerals, and special symbols. '
The word symbols are
and array begin const div do else
end if mod not of or procedure
program- record then type var while

In this book, the word symbols are shown in boldface.
The special symbols are '

A numeral is a decimal notation for a nonnegative integer; for example,
0 1351

‘A name consists of a letter which may be followed by more letters and
digits; for example,

x Edison RC4000

In word symbols and names, capital letters are considered equivalent to

Sec. 2.2 VOCABULARY 5 "

*

the corresponding small letters. So the following names are equivalent to one
another:

PASCAL pascal Pascal

Although a word symbol, such as then, is printed in boldface here, it
will normally be displayed in roman type on a computer terminal, as in the
following example:

ifx>0thenx:=x—1
You may omit some of the spaces between the symbols; for example,
if x>0 then x:=x—1

But if you remove the space between the word then and the name x, you get
an incorrect sentence:

if x>0 thenx:=x—1

in which the Boolean expression x>0 is followed by an undefined name
thenx instead of a then symbol. The purpose of the space is to separate the
two symbols then and x.

Every line of program text ends with a newline character. Two symbols
can also be separated by a newline character; for example,

if x>0 then
x:=x—1

or by a comment enclosed in braces:
if x>0 then{reserve resource}x:=x—1

A comment méy extend ‘over several lines and may contain other (nested)
comments:

{This is a {nested} comment
that extends over two lines}

The character { cannot occur within a comment (except as part of a nested
comiment).

Spaces, newline characters, and comments are called separators. Any
symbol may be preceded by one or more separators. Two adjacent word
symbols, names, and rumerals must be separated by at least one separator.

12 : A PASCAL SUBSET Chap. 2

2.3 SYNTACTIC RULES

A sequence of symbols that is formed according according to the rules
of a programming language is called a sentence in the language. In Pascal—, a
-variable definition, such as

var x: integer;
and an assignment statement, such as
x:=x—1

are sentences. However, as the following example shows, not every sequence
of symbols is a sentence:

x—x:=1

The rules that define all possible sentences of a programming language
are called the grammar of the language. We will define the grammar of Pas-
cal— in a notation known as the extended Backus-Naur form (or BNF).

We will introduce BNF rules by means of examples that define the
syntax of very simple arithmetic expressions. In these expressions, the only
operands are numerals and the operators are either + or —. Some examples
of these expressions are -

—5 3+1066—4 118 — (7 +12)
The following grammar defines all possible expressions of this form:

(1) Expression = [Operator] Term { Operator Term } .
(2) Operator = “+ | “—, A
(8) Term = Numeral | “(>’ Expression)" .
(4) Numeral = Digit { Digit) .
(5) Digit = “0” I “1” I “2” I “3” l “4” I
“5” | “6.’9 | “7’9 | (‘8” I “9)9 .

The grammar consists of five BNF rules:
Rule 1 says that an expression consists of three parts. The first part is
either an operator or nothing. This is expressed by the notation

[Operator]

