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Preface
[nfinite Possibility

All mimsy were the borogoves,

And the mome raths outgrabe.

— Lewis Carroll (1832-1898), “Jabberwocky”

An ape sits hunched over a keyboard. A long hairy finger bangs a key,
and the letter a appears on the computer screen. Another random
stab produces n, then a space, then g, p, and e. That an ape would gen-
erate this particular sequence of characters is, of course, highly
improbable. In the realm of random processes, however, any conceiv-
able sequence of characters is possible, from utter gibberish to the full
text of this book.

The seemingly infinite possibilities offered by randomness have
long intrigued me. Years ago when I was a high school student, I
came across a provocative statement by Arthur Stanley Eddington
(1882-1944), a prominent astronomer and physicist. “If an army of
monkeys were strumming on typewriters, they might write all the
books in the British Museum,” he noted.

Fddington wanted to emphasize the improbability of such an out-
come, and his remark was meant as an example of something that
could happen in principle but never in practice. I was left with the
indelible image of a horde of monkeys forever pecking away at type-
writers, generating the world’s literature.

The preface that you are now reading contains nearly two thou-
sand words, or roughly ten thousand characters, including spaces. An
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ape at a keyboard can choose among twenty-six letters and about four-
teen other keys for punctuation, numbers, and spaces. Thus, it has one
chance in forty of hitting a as the first letter, one chance in forty of
picking n next, and so on. To write the entire preface, the ape would
have to make the correct choice again and again. The probability of
such an occurrence is one in forty multiplied by itself ten thousand
times, or one in 401999 That figure is overwhelmingly larger than the
estimated number of atoms in the universe, which is a mere 1080,

One would have to wait an exceedingly long time before a mem-
ber of a troop of apes happened to compose this book by chance, let
alone the millions of volumes in the Library of Congress and the
British Museum. Sifting through the troop’s vast output to find the
flawless gems, including original works of significant merit, would
itself be a notably frustrating, unrewarding task. By eschewing ran-
domness, a human author, on the other hand, can generate a mean-
ingful string of characters far more efficiently than an ape, and the out-
put generally requires considerably less editing.

Most people, including mathematicians and scientists, would say
that they have a good idea of what the word random means. They can
readily give all sorts of examples of random processes, from the flipping
of a coin to the decay of a radioactive atomic nucleus. They can also
list phenomena in which chance doesn’t appear to play a role, from
the motion of Earth around the sun to the ricochets of a ball between
the cushions of a billiard table and the steady vibrations of a violin’s
plucked string.

Often, we use the word random loosely to describe something that
is disordered, irregular, patternless, or unpredictable. We link it with
chance, probability, luck, and coincidence. However, when we exam-
ine what we mean by random in various contexts, ambiguities and
uncertainties inevitably arise. Tackling the subtleties of randomness
allows us to go to the root of what we can understand of the universe
we inhabit and helps us to define the limits of what we can know with
certainty.

We think of flipping a coin as a way of making a blind choice, yet
in the hands of a skilled magician the outcome may be perfectly pre-
dictable. Moreover, a process governed entirely by chance can lead to
a completely ordercd result, whether in the domain of monkeys
pounding on keyboards or atoms locking into place to form a crystal.
At the same time, a deterministic process can produce an unpre-
dictable outcome, as seen in the waywardness of a ball rebounding
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within the confines of a stadium-shaped billiard table or heard in the
screeches of an irregularly vibrating violin string. We can even invent
mathematical formulas to generate predictable sequences of numbers
that computers can then use to simulate the haphazard wanderings of
perfume molecules drifting through the air.

It's useful to distinguish between a random process and the results
of such a process. For example, we think of typing monkeys as genera-
tors of random strings of characters. If we know that such a random
process 1s responsible for a given string, we may be justified in labeling
or interpreting the string itself as random. However, if we don’t know
the source of a given string, we are forced to turn to other mcthods to
determine what, if anything, the string means. Indeed, reading itself
involves just such a search for meaning among the lines of characters
printed on a page or displayed on a computer screen.

Consider the passage from Lewis Carroll’s poem “Jabberwocky”
that starts off the preface. From the presence of a few familiar words,
the pattern of spaces, and the vowel-consonant structure of the remain-
ing words, we would surmise that the author intended those lines to
mean something, even though we don’t understand many of the
words. If the same passage were to come from typing monkeys, how-
ever, we might very well reject it as gibberish, despite the fragments of
structure and pattern.

Similarly, in flipping a coin we know from experience (or theory)
that we're likely to obtain an equal number of heads and tails in a long
sequence of tosses. So if we see twenty-five heads in a row, it might be
the legitimate though improbable result of a random process. However,
it might also be advisable to check whether the coin is fair and to find
out something about the fellow who's doing the flipping. The context
determines how we interpret the data.

At the same time, just because we happen to see a sequence of
roughly equal numbers of heads and tails doesn’t mean that the results
arise from tosses of a fair coin. It's possible to program a computer with
a numerical recipe that involves no randomness yet gives the same dis-
tribution of heads and tails. Thus, given an arbitrary sequence of heads
and tails, there’s really no way to tell with confidence whether it's the
result of a random process or it's been generated by a formula based on
simple arithmetic.

“From a purely operational point of view . . . the concept of ran-
domness is so elusive as to cease to be viable,” the mathematician
Mark Kac said in a 1983 essay on the nature of randomness. Kac also
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took a critical look at the different ways in which we sometimes inter-
pret randomness in different contexts. For example, in the book
Chance and Necessity, the biologist Jacques Monod (1910-1976) sug-
gested that a distinction be made between “disciplined” chance, as
used in physics to describe, say, radioactive decay, and “blind” chance.
As an example of the latter, he cited the death of a doctor who, on his
way to see a patient, was killed by a brick that fell from the roof of a
building.

Kac argued that the distinction Monod makes really isn’'t mean-
ingful. Although statistics on doctors killed by falling bricks aren’t
readily available, there are extensive data on Prussian soldiers kicked to
death by horses—events that also fall under the category of blind
chance. When one compares data on the number of soldiers killed in
specified time intervals with data on the number of radioactive decays
that have occurred in analogous periods, the two distributions of events
look very similar.

Mathematics and statistics provide ways to sort through the various
meanings of randomness and to distinguish between what we can and
cannot know. They help us shape our expectations in different situa-
tions. In many cases, we find that there are no guarantees, only proba-
bilities. We need to learn to recognize such limitations on certainty.

The Jungles of Randomness offers a random trek through the
mélange of order and disorder that characterizes everyday experience.
Along the way, my intention is to reveal a little of the immense, though
often overlooked, impact of mathematics on our lives, to examine its
power to explain, to suggest its austere elegance and beauty, and to pro-
vide a glimmer of its fundamental playfulness.

The search for pattern is a pervasive theme in mathematics. It is
this pursuit that brings to our attention the curious interplay of order
hidden in randomness and the randomness that is embedded in order.
It's part of what makes mathematics such an alluring sport for mathe-
maticians.

My aim is to provide a set of mathematical X rays that disclose the
astonishing scope of randomness. The mathematical skeletons un-
veiled in these revealing snapshots serve as a framework for under-
standing a wide range of phenomena, from the vagaries of roulette
wheels to the synchronization of cells in a beating heart. It's like open-
ing up a watch to see what makes it tick. Instead of gears, levers, and
wheels, however, we see equations and other pieces of mathematical
apparatus.
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Characterizing the vibrations of a drum’s membrane, arranging
points on the surface of a sphere, modeling the synchronized blink of a
cloud of fireflies in Thailand, and playing games of chance are among
the mathematical pastimes that provide connections to various aspects
of everyday life. Each of those playful activities has prompted new
thinking in mathematics. Each one brings randomness into play.

Mathematics encompasses the joy of solving puzzles, the exhilara-
tion of subduing stubborn problems, the thrill of discerning patterns
and making sense of apparent nonsense, and the immense satisfaction
of nailing down an eternal truth. It is above all a human enterprise,
one that is sometimes pursued simply for its own sake with nary a prac-
tical application in mind and sometimes inspired by a worldly concern
but invariably pushed into untrodden territory. Mathematical rescarch
continually introduces new ideas and uncovers intriguing connections
between old, well-established notions. Chance observations and in-
formed guesses develop into entirely new fields of inquiry. Almost
miraculously, links to the rest of the world inevitably follow.

With its system of theorems, proofs, and logical necessity, mathe-
matics offers a kind of certainty. The tricky part lies in establishing
meaningful connections between the abstract mathematical world that
we create in our minds and the everyday world in which we live.
When we find such links, mathematics can deliver accurate descrip-
tions, yield workable solutions to real-world problems, and generate
precise predictions. By making connections, we breathe life into the
abstractions and symbols of the mathecmaticians’ games.

Intriguingly, the mathematics of randomness, chaos, and order
also furnishes what may be a vital escape from absolute certainty—an
opportunity to exercise free will in a deterministic universe. Indeed, in
the interplay of order and disorder that makes life interesting, we
appear perpetually poised in a state of enticingly precarious perplexity.
The universe is neither so crazy that we can’t understand it at all nor so
predictable that therc’s nothing left for us to discover.

So, the trek through the jungles of randomness starts with games of
chance. It proceeds across the restless sea of life, from the ebb and flow
of human concourse to the intricacies of biological structure and the
dynamics of flashing fireflies. It wanders into the domain of sounds
and oscillations and the realm of fractals and noise. It emerges from
the territory of complete chaos as a random walk. Glimpses of gam-
bling lead to a lifetime of chance.

Let the games begin!
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2 THE JUNGLES OF RANDOMNESS

die tumbles out of a cupped hand, bounces on the carpet a few
times, rolls a short distance, then teeters to a stop. The uppermost
face of the white cube shows four black dots arranged in a square.

Grinning, a child briskly moves a red token four squares to the
right along the bottom row of a large checkerboard grid. The token
lands on a square marked with the foot of a ladder. The player imme-
diately takes the shortcut, advancing the token up the rungs to a higher
row. Just ahead lies a square ominously marked with the upper end of
a chute —the start of a costly detour.

With moves governed entirely by the roll of a die, Chutes and Lad-
ders is a racecourse on which children of different ages and their elders
can meet on an equal footing. Physical prowess and breadth of knowl-
edge are immaterial on such a field. Only luck comes into play.

The playing of games has a long history. One can imagine the ear-
liest humans engaged in contests of physical strength and endurance,
with children racing about playing tag and great heroes struggling
against daunting obstacles, as recorded in ancient myths. Written ref-
erences to games go back thousands of years, and archaeologists have
recovered a wide variety of relics that they interpret as gaming boards
and pieces.

In the year 1283, when the king of Castile, Alfonso X (1221-1284),
compiled the first book of games in European literature, he testified to
the importance of games-playing in medieval society. “God has in-
tended men to enjoy themselves with many games,” he declared in the
book’s introduction. Such enterfainments “bring them comfort and
dispel their boredom.”

Fven in Alfonso’s time, many of the board games he described
were already hundreds of years old. Chess, the king’s personal favorite,
had been developed in India centuries earlier. Backgammon, one of
the great entertainments of thirteenth-century nobility, had evolved
from the Roman game tabula.

Succeeding centuries brought new amusements, along with varia-
tions on old ones. Each age and place had its particular favorites: the
dice-and-counter game of pachisi in India, the coin-sliding game of
shove ha’penny in William Shakespeare’s England, the ancient game
of go in China and Japan, and the card game cribbage in seventeenth-
century Europe and America. In the Victorian era in Great Britain,
nearly every parlor featured a wooden board of holes and pegs for the
game of peg solitaire.



THE DIE Is CasT 3

Amusement remains the motivation underlying the explosion of
ingenuity that has now created a bewildering array of addictive com-
puter, video, and arcade games, various forms of online and casino
gambling, and new sports ranging from beach volleyball to snowboard-
ing, along with novel board games and puzzles to tickle the mind.

“With their simple and unequivocal rules, [games] are like so
many islands of order in the vague untidy chaos of experience,” the
novelist Aldous Huxley (1894-1963) wrote a few decades ago. “When
we play games, or even when we watch them being played by others,
we pass from the incomprehensible universe of given reality into a
neat little man-made world, where everything is clear, purposive and
easy to understand.”

In these miniature worlds, competition brings excitement. Ran-
domness serves as an equalizer. Chance introduces an element of sus-
pense. Risk amplifies the thrill of play to an intoxicating level.

These tidy microcosms also attract mathematicians, who can’t re-
sist the distinctively human pleasure of learning the secrets of games.
Who stands to win? What's the best move? Is there an optimal strategy?
How long is a game likely to take? How do rules combine with chance
to produce various outcomes? How are fairness and randomness
linked?

In games of chance, each roll of a die, toss of a coin, turn of a card,
or spin of a wheel brings a delicious surprise. Anyone can play. Anyone
can win—or lose. Mathematics helps dispel some of the mystery sur-
rounding unpredictable outcomes. It embodies an ever-present urge to
tame the unruliness of Lady Fortune.

Using mathematical reasoning, we can’t predict the outcome of a
single roll of a die, but we can alter our expectations in the light of
such an analysis. We may take comfort in the notion that, if the die is
fair, each face of it will come up equally often in the long run. More
generally, we can begin to make sense of and exploit the patterns that
inevitably appear and disappear among the infinite possibilities offered
by random choices.

Rolls and Flips

Dice are among the oldest known randomizers used in games of
chance. In 49 B.C., when Julius Caesar ordered his troops across the
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river Rubicon to wage civil war in Italy, the alea of the well-known
proverb he quoted already had the standard form of the die we use to-
day: a cube engraved or painted with one to six dots, arranged so that
the number of dots on opposite faces totals seven and the faces marked
with one, two, and three dots go counterclockwise around a corner.

More than two thousand years earlier, the nobility of the Sumerian
city of Ur in the Middle East played with tetrahedral dice. Carefully
crafted from ivory or lapis lazuli, each die was marked on two of its four
corners, and players presumably counted how many marked or un-
marked tips faced upward when these dice were tossed. Egyptian
tombs have yielded four-sided pencils of ivory and bone, which could
be flung down or rolled to see which side faces uppermost. Cubic dice
were used for games and gambling in classical Greece and in Iron Age
settlements of northern Europe.

Because it has only two sides, a coin is the simplest kind of die. Typ-
ically, the two faces of a coin are made to look different (heads or tails),
and this distinguishing feature plays a key role in innumerable pastimes
in which a random decision hinges on the outcome of a coin toss.

How random is a coin toss? Using the equations of basic physics,
it’s possible to predict how long it takes a coin to drop from a known
height. Apart from a small deviation due to measurement error, the
time it will hit can be worked out precisely. On the other hand, a prop-
erly flipped coin tossed sufficiently high spins so often during its flight
that calculating whether it lands heads or tails is practically impossi-
ble, even though the whole process is governed by well-defined physi-
cal laws.

Despite this unpredictability for individual flips, however, the re-
sults of coin tossing aren’t haphazard. For a large number of tosses, the
proportion of heads is very close to 5.

In the eighteenth century, the French naturalist Georges-Louis
Leclerc (1707-1788), the Comte de Buffon, tested this notion by ex-
periment. He tossed a coin 4,040 times, obtaining 2,048 heads (a pro-
portion of 0.5069). Around 1900, the English mathematician Karl Pear-
son (1857-1936) persevered in tossing a coin twenty-four thousand
times to get 12,012 heads (0.5005). During World War 11, an English
mathematician held as a prisoner of war in Germany passed the time in
the samme way, counting 5,067 heads in ten thousand coin tosses.

Such data suggest that a well-tossed fair coin is a satisfactory ran-
domizer for achieving an equal balance between two possible out-
comes. However, this equity of outcome doesn’t necessarily apply to a
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coin that moves along the ground after a toss. An uneven distribution
of mass between the two sides of the coin and the nature of its edge can
bias the outcome to favor, say, tails over heads. A U.S. penny spinning
on a surface rather than in the air, for example, comes up heads only
30 percent of the time. To ensure an equitable result, it’s probably wise
to catch a coin before it lands on some surface and rolls, spins, or
bounces to a stop.

Empirical results from coin-tossing experiments support the logi-
cal assumption that each possible outcome of a coin toss has a proba-
bility of ¥, or .5. Once we make this assumption, we can build abstract
models that capture the probabilistic behavior of tossed coins—both
the randomness of the individual tosses and the special kind of order
that emerges from this process.

Consider what happens when a single coin is tossed repeatedly.
On the first toss, the outcome is either a head or a tail. Two tosses have
four (2 X 2) possible outcomes, each with a probability of Yy (or .25);
and three tosses have eight (2 X 2 X 2) possible outcomes. In general,
the number of possible outcomes can be found by multiplying to-
gether as many 2s as there are tosses.

One can readily investigate the likelihood that certain patterns will
appear in large numbers of consecutive tosses. For example, if a coin is
tossed, say, 250 times, what’s the longest run of consecutive heads
that’s likely to arise?

A simple argument gives us a rough estimate. Except on the first
toss, a run of hcads can begin only after a toss showing tails. Thus, be-
cause a tail is likely to come up about 125 times in 250 tosses, there are
125 opportunities to start a string of heads. For about half of these tails,
the next toss will be a head. This gives us around sixty-three potential
head runs. Roughly half the time, the first head will be followed by a
second one. So, around thirty-two runs will consist of two heads or
more. About half of these will contain at least one additional head,
meaning that we will probably get sixteen runs of three heads or more,
eight runs of at least four heads, four runs of at least five heads, two
runs of six heads or more, and one run of seven heads or more.

That's actually a surprising result. People who are asked to write
down a string of heads or tails that looks random rarely include se-
quences of more than four or five heads (or tails) in a row. In fact, it’s
generally quite easy to distinguish a human-generated sequence from
a truly random sequence because the one that is written down by a
human typically incorporates an insufficient number of long runs.
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Possible Outcomes of Tossing
a Coin One, Two, or Three Times

Number of Heads Probability

One Toss
T 0 %,
H 1 %)
Two Tosses
TT 1 Vi
TH 1 A
HT | A
HH 2 A
Three Tosses
I'T1 0 17
TTH 1 %
THT 1 %
HTT 1 Ve
THH 2 %
HTH 2 Ve
HHT 2 7
HHH 3 Vs

In tossing a fair coin, the probability of each out-
come —head (H) or tail (T)—is equal. If we toss once,
there are only two possible outcomes, each of which
has a probability of %3. Tossing twice, we have four pos-
sible outcomes, each having a probability of 4. Toss-
ing three times, we have eight possible outcomes, each
having a probability of 4. From the table, you can see
that with three tosses, the probability of obtaining no
heads is Y, one head is %, two heads is %3, and three
heads is Y.

So, although an honest coin tends to come up heads about half the
time, there’s a good chance it will fall heads every time in a sequence
of two, three, or four tosses. The chances of that happening ten times
in a row are much smaller, but it can still happen. That’s what makes it
tricky to decide, just from a record of the outcomes of a short sequence
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of tosses, whether such as string is a chance occurrence or it represents
evidence that the coin is biased to always come up heads.

Random Fairness

Like coins, cubic dice are subject to physical laws. An unscrupulous
player can take advantage of this physics to manipulate chance. A
cheat, for instance, can control a throw by spinning a die so that a par-
ticular face remains uppermost or by rolling it so that two faces stay
vertical. In each case, the maneuver reduces the number of possible
outcomes. A grossly oversized die, in particular, is quite vulnerable to
such manipulation. The standardized size of dice used in casinos may
very well represent a compromise configuration —based on long expe-
rience — that maximizes the opportunity for fairness. Casinos and gam-
bling regulations specify the ideal dimensions and weight of dice.

A cheat can also doctor a die to increase the probability of or even
guarantee certain outcomes. References to “loaded dice,” in which
one side is weighted so that a particular face falls uppermost, have
been found in the literature of ancient Greece. Nowadays casino dice
are transparent to reduce the chances of such a bias being introduced.

Even without deliberately creating a bias, it’s difficult to manufac-
ture dice accurately without introducing some asymmetry or nonuni-
formity. Manufacturers of casino dice take great pains to assure quality.
Typically 0.75 inch wide, a die is precisely sawed from a rectangular
rod of cellulose or some other transparent plastic. Pits are drilled about
0.017 inch deep into the faces of the cube, and the recesses are then
filled in with paint of the same weight as the plastic that has been
drilled out. The edges are generally sharp and square.

In contrast, ordinary store-bought dice, like those used in chil-
dren’s games, generally have recessed spots and distinctly rounded
edges. Because much less care goes into the fabrication of such dice,
they are probably somewhat biased. Achieving fairness is even more
difficult with polyhedral dice that have eight, twelve, or twenty faces,
each of which must be manufactured and finished to perfection.

In principle, an unbiased cubic die produces six possible out-
comes. It makes sense to use a mathematical model in which each face
has an equal probability of showing up. One can then calculate other
probabilities, including how often a certain number is likely to come
up. Several decades ago, the Harvard statistician Frederick Mosteller



