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Abs‘tract

A neural network architecture is introduced for incremental supervised learning of recog
nition categories and multidimensional maps in response to arbitrary sequences of analog
binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzz:
logic and Adaptive Resonance Theory (ART) neural networks. Fuzzy ARTMAP realizes -
new Minimax Learning Rule that conjointly minimizes predictive error and maximizes coa.
compression, or generalization. This is achieved by a match tracking process that increase-
the ART vigilance parameter by the minimum amount needed to correct a predictive error
As a result, the system automatically learns a minimal number of recognition categories
or “hidden units,” to meet accuracy criteria. A normalization procedure called complement
coding leads to a symmetric theory in which the MIN operator (A) and the MAX operat-
(v) of fuzzy logic play complementary roles. Improved prediction is achieved by training th
system several times using different orderings of the input set, then voting. This voting strat
egy can also be used to assign probability estimates to competing predictions given smal.
noisy, or incomplete training sets. Simulations illustrate Fuzzy ARTMAP performance -
compared to benchmark back propagation and genetic algorithm systems. These simulation-
include (i) finding points inside versus outside a circle; (ii) learning to tell two spirals apa:

(iii) incremental approximation of a piecewise continuous function; (iv) a letter recognitio
database; and (v) a medical database.
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Fuzzy ARTMAP

ARTMAP is a class of neural network architectures that perform incremental supervised
learning of recognition categories and multidimensional maps in response to input vectors
presented in arbitrary order. The first ARTMAP system [3] was used to classify binary
vectors. This article describes a more general ARTMAP system that learns to classify
analog as well as binary vectors [2]. This generalization is accomplished by replacing the
ART 1 [1] modules of the binary ARTMAP system with Fuzzy ART [4] modules. Where
ART 1 dynamics are described in terms of set-theoretic operations, Fuzzy ART dynamics
are described in terms of fuzzy set-theoretic operations [9]. Hence the new system is called
Fuzzy ARTMAP. Also introduced is an ARTMAP voting strategy. This voting strategy is
based on the observation that ARTMAP fast learning typically leads to different adaptive
weights and recognition categories for different orderings of a given training set, even when
overall predictive accuracy of all simulations is similar. The different category structures
cause the set of test items where errors occur to vary from one simulation to the next. The
voting strategy uses an ARTMAP system that is trained several times on input sets with
different orderings. The final prediction for a given test set item is the one made by the
largest number of simulations. Since the set of items making erroneous predictions varies
from one simulation to the next, voting cancels many of the errors. Further, the voting
strategy can be used to assign probability estimates to competing predictions given small,
noisy, or incomplete training sets.

Simulations have illustrated Fuzzy ARTMAP performance as compared to benchmark
back propagation and genetic algorithm systems. In all cases, Fuzzy ARTMAP simulations
lead to favorable levels of learned predictive accuracy, speed, and code compression in both
on-line and off-line settings. Fuzzy ARTMAP is also easy to use. It has a small number of
parameters, requires no problem-specific system crafting or choice of initial weight values,
and does not get trapped in local minima.

ARTMAP Dynamics

Each ARTMAP system includes a pair of Adaptive Resonance Theory modules (ART,
and ART}) that create stable recognition categories in response to arbitrary sequences of
input patterns (Figure 1). During supervised learning, the ART, module receives a stream
{a(®} of input patterns and ART), receives a stream {b(P)} of input patterns, where b(®)
is the correct prediction given a{P). These modules are linked by an associative learning
network and an internal controller that ensures autonomous system operation in real time.
The controller is designed to create the minimal number of ART, recognition categories,
or “hidden units,” needed to meet accuracy criteria. It does this by realizing a Minimax
Learning Rule that enables an ARTMAP system to learn quickly, efficiently, and accurately
as it conjointly minimizes predictive error and marimizes predictive generalization. This .
scheme automatically links predictive success to category size on a trial-by-trial basis using
only local operations. It works by increasing the vigilance parameter p, of ARTs by the
minimal amount needed to correct a predictive error at ART),.

Parameter p, calibrates the minimum confidence that ART, must have in a recognition
category, or hypothesis, activated by ad input a(®) in order for ART, to accept that category,
rather than search for a better one through an automatically controlled process of hypothesis
testing. Lower values of p, enable larger categories to form. These lower pa values lead to
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Figure 1. Fuzzy ARTMAP architecture. The ART, complement coding preprocessor trans-
forms the M,-vector a into the 2M,-vector A = (a,ac) at the ART, field F§. A is the input
vector to the ART, field F{. Similarly, the input to F} is the 2M,-vector (b bc). When a
prediction by ART, is dlsconﬁrmed at ART,,, mhlbltlon of map field activation induces the
match tracking process. Match tracking raises the ART, vigilance (pa) to just above the F{
to F§ match ratio |x®|/|A|. This triggers an ART, search which leads to activation of either
an ART., category that correctly predicts b or to a previously uncommitted ART, category
node.

broader generalization and higher code compression. A predictive failure at ART} increases
pa by the minimum amount needed to trigger hypothesis testing at ART,, using a mechanism
called match tracking [3]. Match tracking sacrifices the minimum amount of generalization
necessary to correct a predictive error. Hypothesis testing leads to the selection of a new
ART, category, which focuses attention on a new cluster of a(P) input features that is better
able to predict b(P). Due to the combination of match tracking and fast learning, a single
ARTMAP system can learn a different prediction for a rare event than for a cloud of similar
frequent events in which it is embedded.

Whereas binary ARTMAP employs ART 1 systems for the ART, and ART, modules
Fuzzy ARTMAP substitutes Fuzzy ART systems ¥gr these modules. Fuzzy ART shows how
computations from fuzzy set theory can be incorporated naturally into ART systems. Fc
example, the intersection (n) operator that describes ART 1 dynamics is replaced by th.
AND operator (A) of fuzzy set theory [9] in the choice, search, and learning laws of ART |
Especially noteworthy is the close relationship between the computation that defines fuzz:
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subsethood {7] and the computation that defines category choice in ART 1. Replacing
operation N by operation A leads to a more powerful version of ART 1. Whereas ART 1
can learn stable categories only in response to binary input vectors, Fuzzy ART can learn
stable categories in response to either analog or binary input vectors. Moreover, Fuzzy ART
reduces to ART 1 in response to binary input vectors.

In Fuzzy ART, learning always converges because all adaptive weights are monotone
nonincreasing. Without additional processing, this useful stability property could lead to
the unattractive property of category proliferation as too many adaptive weights converge to
zero. A preprocessing step, called complement coding, uses on-cell and off-cell responses to
prevent category proliferation. Complement coding normalizes input vectors while preserving
the amplitudes of individual feature activations. Without complement coding, an ART
category memory encodes the degree to which critical features are consistently present in
the training exemplars of that category. With complement coding, both the degree of absence
and the degree of presence of features are represented by the category weight vector. The
corresponding computations employ fuzzy OR (v, maximum) operators, as well as fuzzy
AND (A, minimum) operators.

Benchmark Simulations

In one benchmark simulation, Fuzzy ARTMAP performed the task of learning to identify
which points lie inside and which lie outside a given circle [2]. On-line learning (also called
incremental learning) is demonstrated, with test set accuracy increasing from 88.6% to 98.0%
as the training set increased in size from 100 to 100,000 randomly chosen points. With off-
line learning, the system needed from 2 to 13 epochs to learn all training set exemplars
to 100% accuracy, where an epoch is defined as one cycle of training on an entire set of
input exemplars. Test set accuracy then increased from 89.0% to 99.5% as the training
set size increased from 100 to 100,000 points. Application of the voting strategy improved
an average single-run accuracy of 90.5% on five runs to a voting accuracy of 93.9%, where
each run trained on a fixed 1,000-item set for one epoch. These simulations are compared
with studies by Wilensky [8] of back propagation systems. These systems used at least
5,000 epochs to reach 90% accuracy on training and testing sets. Other benchmarks include
learning to tell two spirals apart and learning to approximate a continuous function.

Simulation: Letter Image Recognition

Frey and Slate [5] recently developed a benchmark machine learning task that they
describe as a “difficult categorization problem” (p. 161). The task requires a system to
identify an input exemplar as one of 26 capital letters A-Z. The database was derived from
20,000 unique black-and-white pixel images. The difficulty of the task is due to the wide
variety of letter types represented: the twenty “fonts represent five different stroke styles
(simplex, duplex, complex, and Gothic) and six different letter styles (block, script, italic,
English, Italian, and German)” (p. 162). In addition each image was randomly distorted,
leaving many of the characters misshapen. Sixteen numerical feature attributes were then
obtained from each character image, and each attribute value was scaled to a range of 0 to
15. The resulting Letter Image Recognition fil€ is archived in the UCI Repository of Machine
Learning Databases and Domain Theories, maintained by David Aha and Patrick Murphy
(ml_repository@ics.uci.edu).
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TABLE 1

% Correct Test No. ART. No. Epochs
Set Predictions Categories
(a)
Average 91.8% 786 1
Range 91.2%-92.6% 763-805 1
Voting 95.3%
(b)
Average 93.9% 1,021 5
Range 93.4%-94.6% 990-1,070 5
Voting 96.0%

Table 1. Voting strategy applied to sets of 5 Fuzzy ARTMAP simulations of the Frey
Slate character recognition task, with training on 1 epoch (a) or 5 epochs (b). (a) Voting
eliminated 43% of the errors, which dropped from 8.2% to 4.7%. (b) Voting eliminated 34%
of the errors, which dropped from 6.1% to 4.0%.

Frey and Slate used this database to test performance of a family of classifiers based on
Holland’s genetic algorithms [6]. The training set consisted of 16,000 exemplars, with the
remaining 4,000 exemplars used for testing. Genetic algorithm classifiers having different in
put representations, weight update and rule creation schemes, and system parameters were
systematically compared. Training was carried out for 5 epochs, plus a sixth “verification”
pass during which no new rules were created but a large number of unsatisfactory rules
were discarded. In Frey and Slate’s comparative study, these systems had correct prediction
rates that ranged from 24.5% to 80.8% on the 4,000-item test set. The best performance
(80.8%) was obtained using an integer input representation, a reward sharing weight update.
an exemplar method of rule creation, and a parameter setting that allowed an unused o
erroneous rule to stay in the system for a long time before being discarded. After training.
the optimal case, that had 80.8% performance rate, ended with 1,302 rules and 8 attributes
per rule, plus over 35,000 more rules that were discarded during verification. (For purposes
of comparison, a rule is somewhat analogous to an ART, category in ARTMAP, and the
number of attributes per rule is analogous to the size of ART, category weight vectors.)
Building on the results of their comparative study, Frey and Slate investigated two types
of alternative algorithms, namely an accuracy-utility bidding system, that had slightly im
proved performance (81.6%) in the best case; and an exemplar/hybrid rule creation scheme
that further improved performance, to a maximum of 82.7%, but that required the creatior
of over 100,000 rules prior to the verification step.

Fuzzy ARTMAP had an error rate on the letter recognition task that was consistent!\
less than one third that of the three best Frey-Slate genetic algorithm classifiers describec
above. Moreover Fuzzy ARTMAP simulations each created fewer than 1,070 ART, cate
gories, compared to the 1,040~1,302 final rules of the three genetic classifiers with the be
performance rates. With voting, Fuzzy ARTMAP reduced the error rate to 4.0% (Table .
Most Fuzzy ARTMAP learning occurred on the first epoch, with test set performance o
systems trained for one epoch typically over 97% that of systems exposed to inputs for th.
five epochs.
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Table 1 shows how voting consistently improves performance. With 1 or 5 training
epochs, Fuzzy ARTMAP was run for 5 independent simulations, each with a different input
order. In all these, and in all other cases tested, voting performance was significantly better
than performance of any of the individual simulations in a given group. In Table 1(a), for
example, voting caused the error rate to drop to 4.7%, from a 5-simulation average of 8.2%.
Hence with 1 training epoch, 5-simulation voting eliminated about 43% of the test set errors.
In the 5-epoch simulations, where individual training set performance was close to 100%,
5-simulation voting still reduced the error by about 34% (Table 1(b)), where voting reduced
the average error rate of 6.1% to a voting error rate of 4.0%.
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Abstract. A simple self-organizing neural network model, called an EXIN network, that
learns to process sensory information in a contezt-sensitive manner, is described. Exposur«
to a perceptual environment during a developmental period configures the network to per
form appropriate organization of sensory data. An anti-Hebbian learning rule causes some
lateral inhigitory connection weights to weaken, thereby letting multiple neurons become
simultaneously active (multiple winners). The rule lets other inhibitory weights remai:.
strong; these enforce specific simultaneous contextual consistency constraints on allowabl
combinations of activations. EXIN networks perform near-optimal parallel parsing of mui
tiple superimposed patterns, by simultaneous distributed activation of multiple neuron-
EXIN networks implement a form of credit assignment; they even suppress the activation «
some of the most-excited neurons when necessary to achieve maximally context-sensitive
global input representations.

The Problem: Context-Sensitivity in Recognition of Multiple Patterns

Context is an important determinant of our interpretations of perceptual data. How
ever, unsupervised Hebbian winner-take-all (WTA) neural networks (NNs) handle contextua
information poorly. This paper describes how to extend well-known unsupervised learning
rules to let NNs learn to process perceptual information in a context-sensitive manner.

By definition, WTA NNs are capable of representing each input pattern only as a
single, lumped item. Suppose a simple WTA NN has learned to recognize three patterns
ab, abc, and ed (Nigrin, 1990a) léFIGURE 1B). When one of these input patterns &ay ab:
is presented to Layer 1 of this NN (by activating neurons a, b, and ¢, the correspondii
Layer 2 neuron (labeled abc) becomes active, thereby recognizing the pattern.

Now suppose that occasionally, the familiar stimuli ab and cd are presented simultane
ously, so that the input pattern to the NN is abcd. How is this pattern coded? In a WTA NN
the best response is to activate neuron abc, because it represents the closest match to the
input pattern (Fiure 1C). Activation of other Layer 2 neurons is suppressed. Howeve:
such a response essentially ignores the presence of d, as if d were merely noise.

In WTA networks, changes in the strengths of the feedforward excitatory connection-
may be governed by a Hebbian learning rule. For this discussion, let us use the following va:
ant of a Hebbian rule, expressed mathematically as a differential equation (Grossberg, 1982.
Let z;? represent the strength of the excitatory connection from neuron j to neuron i. The

4ot = e f(z) (-2 + hly),
where z; represents the activity level of the j*h neuron, 0 < € << 1, and f and k a
rectified increasing functions (for example, h(z;) = max(0,z;)). In English, this rough!.
means: Whenever a neuron is aclive, its input ezcitatory connections from active neuron-
become gradually stronger, while its input ezcitatory connections from inactive neurons be
come gradually weaker.

In general, self-organizing neural networks extract statistical regularities ‘Si.e., famih.
patterns) from their input environment. Less-familiar patterns are represented in terms
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the more-familiar patterns. Multiple superimposed input patterns may be present simult .
neously at any moment. The key problem to be analyzed in the present paper is how a give
network can decide what the constituent components of its input are, based on the statistic

history of its environment.

Solution: Learning Contextual Constraints with Excitatory + Inhibitory Rule

One solution for this problem requires only a simple, parsimonious modification to t-
WTA system: allowing the lateral inhibitory connection weights to vary, according to -
bounded anti-Hebbian ?earnin rule (Marshall, 1989, 1990abcdef). This method overcome-
many of the limitations of W'%A NNs, allowing NNs to acquire greatly more sophisticatec
forms of behavior. Because the networks use both excitatory ang inhibitory learning rules
let us call them “EXIN” neural networks for short.

The following bounded inhibitory learning rule is used, in concert with the excitator.
rule described above: Whenever a neuron is active, its output inhibitory connections to othe
active neurons become gradually stronger (i.e., more inhibitory), while its output inhibitor,
connections to jnactive neurons become gradually weaker. The inhibitory rule can also be
expressed mathematically as a differential equation (Marshall, 1990acdf): Let z}; represer.

the strength of the inhibitory connection from neuron j to neuron :. Then
d__ -
F7ii 6 g(z;) (“7','.' + Vq(a:,-)),
where z; represents the activity level of the j*h neuron, 0 < § < ¢, and g and g are rectifi-
increasing functions. The parameter V governs the overall amount of coactivation permitte:
in the NN. Thus, if two neurons, ¢ and j, are frequently coactivated, then the strengths ot
their reciprocal inhibitory connections tend to increase, thereby decreasing the likelihoor
that they can become coactivated in the future. On the other hand, if neurons : and ,
are rarely coactivated, then the strengths of their reciprocal connections tend to decrease
thereby permitting them to become coactivated on relatively rare occasions.
Both the excitatory and inhibitory learning rules are bounded: the functions h(z,

and ¢(z;) are rectified, so that connection weights cannot “change sign” (excitatory weights
cannot become inhibitory, and vice versa). The boundedness produces key differences (de
scribed below) between the behavior of the networks in this work and that in others’ work
In particular, the context-sensitivity property emerges as a consequence of the boundednes-

Changes in neuron activations are governed by a shunting differential equation develope-
by Grossberg (1982) and Marshall (1990bc). This equation forces neuron activation levels -
remain within a bounded range. As a consequence, the learning rules are bounded as weli
all connection weights are forced to remain within a specified range.

In the example of FIGURE 1, lateral inhibitory strengths between neurons ab and cd b
come weakened according to the anti-Hebbian rule, because patterns ab and cd do not overla;
at all (thus the neurons tend not to receive simultaneous excitation). On the other hand, i
hibitory strengths between ab and abc and between cd and abc remain strong (Ficure 1H-
because the input patterns that they code overlap substantially.

Thus, when abed is presented, neuron abe receives inhibition from both ab and cd, whils
ab and cd each receive inhibition only from abc. Because abc receives more inhibition
activation is suppressed, and both ab and cd become active. The simultaneous activat -
of both neurons ab and cd is made possible because of the weakened reciprocal inhibit.
between them.

The simultaneous activation of neurons ab and cd represents the NN’s recognition
the superimposed familiar patterns ab and ¢d. The EXIN NN thus chooses a more comp-
representation of the input than is possible in the WTA NN. The contextual presence
coriipletely alters the multiplexed parsing of the input. When abc is presented, the netw.-
groups a, b, and ¢ together as a unit, but when d is added, the network breaks ¢ aw.
from a and b and binds it with d instead, forming two separate groupings. This rad:
alteration of parsing depending on the presence/absence of small distinguishing featu
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(like d) constitutes the EXIN network’s contezt-sensitivity property. In a specific domain like
visual perception, such contextual information can determine the segmentation or grouping
of a set of visual features.

Simulations: Unsupervised Learning of Contextual Constraints

In computational simulations, the EXIN learning rules caused patterns to be identified
by frequency of occurrence, or familiarity. The EXIN networks then build a mechanism that
chooses a near-optimal representation of multiple su imposed patterns, by simultaneous
distributed activation of multiple Layer 2 neurons. P!:gm 2, 3, and 4 display results of a
computer simulation of a simpre EXIN NN.

The simulated NN contains 6 neurons in Layer 1 and 6 in Layer 2. Initially, the feed-
forward excitatory weights are all uniform up to a 1% random factor, and so are the lateral
inhibitory weights. The NN is exposed sequentially to the 6 patterns a, ab, abe, cd, de, def,
in random order, for 30,000 presentations. By the end of this training, the connection weights
shown in FiGUREs 2A and 2B are obtained. Layer 2 neuron codes and responds to one
of the 6 input patterns (FiGURE 3). The strongest lateral inhibitory connections remain
between Layer 2 neurons that code patterns that overlap greatly. The inhibitory connec-
tions between neurons coding non-overlapping patterns have become weakest. Approximate
symmetry (about diagonal) of inhibitory connection weights is maintained.

to to to to to to
abc a ab dof od de ABC A AB DEF CD DE ,
from DE . . . 7

Oo,

A (B) fromCD o . e O //O
( ) from DEF . . . //OO

+ ’
from AB OO// . o
from A O //O .
a b ¢ d ¢ f from ABC ,/OO IR
/7

/

Figure 2: Structure of EXIN network after training. Strong excitatory weights (all in
range 0.95-1.00) remaining after training shown in (A); weak connections (all in range 0.00-0.05) are
omitted from the figure. Neurons in Layer 1 are labeled s through f. Neurons in Layer 2 are named ac-
cording to the Layer 1 neurons from which they receive strong connections. (B) Lateral inhibitory weights
within Layer 2, after training. Radius of each circle indicates connection weight.

FI1GURE 3 shows the responses of the simulated NN to each of the 6 input patterns
separately, after 30,000 presentations of the input patterns. As expected, each of the familiar
input patterns activates the corresponding Layer 2 neuron.

FIGURE 4 shows the simulated NN’s multiplexed, context-sensitive response to a variety
of unfamiliar input combinations. All 64 possible binary input patterns were tested (although
only some are shown here), and reasonable results were produced in each case. For example,
in FIGURE 4D, pattern adf is parsed as a + (Partial)def. A comparison of Ficures 3C and 4A
demonstrates that the EXIN NN indeed has learned to perform the context-sensitive parsing
described in FIGURe 1H-J. Input pattern abc is parsed as abc (Ficure 3C), while abed is
parsed as ab + cd (FIGURE 4A§.

Corhparison with Other Methods

The behavior of EXIN NNs differs from that of ordinary “k-winner” NNs, which merely
activate the k most-excited Layer 2 neurons, regardless of the coactivation or familiarity of
the patterns they code. Instead, EXIN NNs implement a form of credit assignment (Barto,
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Figure 3: Response of trained EXIN network to familiar patterns. Line height represents neuron
activation level.
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Figure 4: Response of trained EXIN network to unfamiliar patterns. The network exhibits
context-sensitive parsing, satisfying the learned constraints.

Sutton, & Anderson, 1983); different representations for a given input unit (such as &)
compete. Only one such representation at a time can become active; the active represen-
tation receives “credit” (by being selected to have its input connection weights adjusted)
for representing the input unit. EXIN NNs can even suppress the activation of some of
the most-excited Layer 2 neurons (e.g., abc) when necessary in order to achieve a maximally
context-sensitive, global representation (ab + ¢d) of the input (abed), as shown in Fiure 11.

The distributed representations in EXIN NNs also make them more efficient than
k-winner NNs, in the following sense: conjunctions (like abed) of familiar patterns (AB,C D)
do not require additional neurons to be accurately represented. In order to represent abcd
as distinct from abc, a k-winner NN would need an extra Layer 2 neuron, devoted to cod-
ing abed. In fact, it would need one for every possible conjunction of input patterns, whereas
EXIN NNs can multiplex the coding of conjunctions by simultaneous activation of several
neurons. The multiplexed distributed coding in EXIN NNs therefore avoids or at least
minimizes the “grandmother cell” dilemma of combinatorial explosion.

While others (Easton & Gordon, 1984; Foldidk, 1989, 1990; Kohonen, 1984; Ni.
grin, 1990ab; Rubner & Schulten, 1990) have proposed using different anti-Hebbian learning
rules for lateral connections, Marshall (1990acdef) showed how EXIN neural networks can
multiplex, or represent simultaneously, more than one superimposed familiar input pattern
Unlike the NNs of Kohonen (novelty detector), Féldidk (decorrelator), and Rubner & Schul
ten (principal components analyzer), EXIN NNs do not allow connections to be convertea
from ezcitatory to inhibitory or vice-versa. Besides being more biologically plausible, this
restriction provides the key advantage of preventing some of the lateral inhibitory connec
tion weights from vanishing. Because some of the lateral inhibitory connection weight:
remain strong, they enforce contextual constraints on allowable combinations of Layer
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neuron activations. FIGURE 1E-G shows a decorrelator network, in which lateral connections
have vanished and some connections from Layer 1 to Layer 2 have become inhibitory. The
decorrelator network essentially responds to differences between the patterns, rather than
the patterns themselves. As a consequence, the decorrelator network does not activate the
closest match to some unfamiliar patterns, such as pattern ¢ (Ficure 1G).

EXIN networks perform essentially the same functions as masking fields (Cohen &
Grossberg, 1986, 1987). However, masking fields require extensive specific prewiring, to
represent all possible input patterns up to a certain size. Much of this representational
capacity may never be used in some perceptual environments. EXIN networks, on the
otﬁer hand, are more plausible and eﬂ'chient because they wire themselves in response to
environmental demands, and they tend to use all available representational capacity.

Conclusions

The neurally plausible excitatory and inhibitory learning rules described in this paper
help explain how certain context-sensitive mechanisms might arise in perceptual systems.
The results here are useful in modeling the development oF a large variety of neural mech-
anisms, including ones for visual segmentation and transparency, auditory segmentation,
visual stereomatching, and visual form perception.
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ABSTRACT

This paper presents an evaluation of the performance and comparison between various paradigms of the ART
family of artificial neural networks in nuclear reactor signal analysis for development of a diagnostic monitoring
system. To closely represent reactor operational data, reactor pump signals from Experimental Breeder Reactor
(EBR-II) are analyzed. The signals are both measured signals collected by Data Acquisition System (DAS) as well
as simulated signals. ART2, ART2A, Fuzzy ART, and Fuzzy ARTMAP are applied in this study.. Several
simulators are built, and the study indicates that while all ART paradigms are appropriate for application in reactor
signal analysis, each has its own unique characteristics and features which can be utilized whenever needed an:
applicable. :

INTRODUCTION

In order to assure a safe operation, nuclear power plants are designed and built incorporating a large numbe-
of sensors of various kinds to monitor reactor condition/parameters at all time. The objective of this research worh
is to evaluate the application of unsupervised/ supervised artificial neural networks (ANNSs) in the analysis ot
reactor signals for reactor condition monitoring. The application of ANNs, specifically the ART family as a too!
for reactor diagnostics is examined here. Reactor pump signals utilized in a wear-out monitoring system developed
for early detection of degradation of pump shaft [14] are analyzed to study the feasibility of a system based on
 artificial neural networks for monitoring and surveillance in nuclear reactors. The Adaptive Resonance Theory
paradigms (ART 2, ART 2-A, Fuzzy ART, and Fuzzy ARTMAP) of ANNs are applied in this study. The signals
are collected signals as well as generated signals simulating the wear progress.

The diagnosis is based on the monitoring of the performance and the impact of an equipment/component s
the operation environment through the analysis of associated signals from the reactor sensors. The wear-ou
monitoring system is based on noise analysis and utilizes Dynamic Data System (DDS) approach of Autoregressive
Moving Average (ARMA) regression modeling. The mathematical representation of the model for a univanatc
system is :

(1-6Z27-aZ3 -, ZY(E) = B,Z7'-b, 2., 2" )R
where,

Y(k) = discrete signal data, k = index of time interval, R(k) = white noise residual, ZYK) = Y-

a,b = autoregressive, moving average parameters.
The autoregressive and moving average parameters are then decomposed into pairs of complex discrete re
(eigeavalues), i.e. for a second order dynamic :

L =a1bi

where, a = rp+n ag = -y
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similarly,

'.u =g°+b%

where, b =1+, b, = 'y’

mpnemmognitionmdthemofwmmminthemonitoﬁngsymmiuchiwedbyintmducing
newpanmetm(repluenﬁnglnindéxofmpmgm)whichmbuedontheinc:useofﬂwimctoﬁheww
related dynamic on the signal ﬂucuuﬁcnudegudaﬁonpfogm[lﬂ.mminobjecﬁyehmiswwthe
selectedANNpu-dimforlhe'apnbilityofduecﬁngmdmognizingdiﬂ'mtlwelsofdexndaﬁonsapm.In
addition, the goal is to achieve this objective without any pre/post signal processing or analysis. Time involved
intheleamingpmeqnoﬁheANNsisofooneemWhallpplyinghighdimsiomlinputspueesformctor
diagnostics. Dutotheutmsiwnunbuof-possiblepmunvadaﬁminaemullamhghdwded@d. On
theotheth:ndachievingdnnmelevélof'pufmmnoeuﬁthnﬁnimumdlhinpulhdesinblemdquiwachﬂmp
without major preprocessing of the signals before application of the astificial neural structures.

The selection of ART2isdutoiudesimddesignpﬁn¢iplunwhummpervindluming,mbiﬁty-
phsﬁcity,mmhdinctmu,mdthemtchmetﬂ:de—oﬁ. Fuzzy ART is selected due to the fact that its
algorithm is developed based on traditional neural network models such as ART 1, while incorporating fuzzy logic
operators, heace enhancing the capabilities of ART 1 for analog inputs. Also Fuzzy ART includes two optional
features (complement coding and fast leaming with slow recoding) which enables the network to overcome
limitations associated with sequential data presentation and stochastic input fluctuations. ART 2A is selected due
to its speed and simplicity of the design. Fuzzy ARTMAP is selected due to its capability of handling nonstationary
stochastic signals as well as supervised leamning.

Theresultisamceeuforallpandigms,andthestudysbowsthatARTZAisnotonlyabletolumand
distinguish the patterns from each other, its learning speed is also extremely fast despite the high dimensional input
spaoes.ln.ddition,Fuuy-ARTiscapableofequivdenlperformmceuAandaspeedasfanasARTZAwith
less than half the input data necessary for both ART2 and ART2A, when applied in complement coding mode.
Fuzzy ARTMAP provided a flexible and high performance supervised/unsupervised learning scheme.

SIGNAL DESCRIPTION
The signals utilized in this study are divided in two groups, the actual measured signal and the simulated

signals. The measured signal is the pump power signal from pump number 1 of the EBR-II nuclear reactor which
is collected from sensors by plant data acquisition system. Figure 1 shows the original plot of this signal data for

fifty seconds time period.
A

Cot. O Cet. N Cat. 1

Cat. 3 Cav. 2 Cot. 2

=" Cat.
Cet.
Cat.

- WNormal
- First Degredeation Level
- Second Degradetion Level

N o

Fig. 1 Measured pump power signal Figure 2. NAB pump power signal
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The first twenty five seconds of data from this measured signal
is used to provide two sets of patterns of 500 data points
dimensionality representirg the normal pump power signal
in this study. Two sets of simulated signals were generated from

W WW“ MW the signal of figure 1 representing the pump power simulated
for two levels of degradation due to deposition of sodium oxide

: Coe.n Gt 0 - *_ on the pump shaft [14]. The two sets of measured signals are
referred to as pattern N. The two sets of simulated data for

first level degradation are pattern A, and the two sets of

simulated data for second level degradation are pattern B. Thus
coz. 2 Cot. 2 g file NAB is a file containing the six sets of data of pattern N,

A, and B respectively (Figure 2). In addition, in order to show

the capability of Fuzzy ART and Fuzzy ARTMAP in pattern

. recognition with less number of input data than required for

Cat. 4 Cot. § Cot. 4 et 3 ART2 and ART2A, the file NAB containing is used as twelve

set of data with 250 data each (Figure 3). These means there

g':' g ::: g:: ; = :::::loneruntnn tever  are 4 sets of 250 data points in each signal, normal, first level

cat 4 ang Cov. 3 -- Second Dagracetion Leved gepradation, and second level degradation. In addition 20 sets

of 250 data points of distorted data for each signal, normal, first

Fig. 3 250 dimensionality training level degradation, and second level degradation were utilized
data. to test the recall performance of the Fuzzy ARTMAP network.

Cot. 2

ART

ART represents a family of ANNs which self-organize categories in response to arbitrary sequences of input
patterns in real time for pattern recognition [4). A class of these networks called ART 1 {2}, which is unsupervised,
can be used only for binary patterns. ART 2 (3,4], which is also an unsupervised class responds to both binary and
analog patterns. The class ART 3 [5] features an advanced reinforcement feedback mechanism which cao alter the
classification sensitivity or directly engaging the search mechanism. The algorithm Fuzzy ART [9] is similar in
architecture to ART 1, however, fuzzy operators are added in order to handle analog patterns without loosing the
advantages of ART 1 architecture. The ARTMAP ("predictive” ART) 7] and Fuzzy ARTMAP {6] are built upon
the basic ART designs, while incorporating supervision in the learning process. ART 2-A ("algorithmic* ART) [8]

is a special case of ART 2 which emphasizes the intermediate and fast learning rates using algebraic equations, hence
accelerating the leamning process. ‘

ART 2

ART 2 [3] has been selected to illustrates some of the principal architectural elements and network processing
characteristics of a typical ART architecture (Figure 4). ART 2 have both attentional and orienting subsystems.
Attentional Subsystem

The attentional subsystem is composed of long term memory and short term memory elements.

Short Term Memory (STM). F1, the feature represeatation field, and F2, the category representation field, are
the two STM main components. FO is utilized as a preprocessing field.

The functions of the F1 field are contrast enhancement, noise suppression, matching, and normalization. F1
is composed of three layers as a difference with ART 1 which only has one. As explained by Carpeater and
Grossberg [2]"Even for binary inputs, ART 2 differs from ART 1 processing" referring to the norms which each
one utilizes. ART 2 utilizes the L2 norm, which as demonstrated by Grossberg [10,11,12] ( based on membrane
equations [13]),arises naturally in neural networks. Among its functions, the normalization mechanism keeps F1i
from saturation in spite of the constant presence of the input pattern during the learning process.

The F2 field by means of competitive interactions of the F2 nodes, chooses the one which responds
maximally to the vector P (pl,...,pN) as P is applied to the bottom-up adaptive filter. In addition, the F2 field
suppresses F2 nodes (i.e., reset) as guided by the orienting subsystem.
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Fig. 4 ART 2 (3}

Orienting Subsystem

Long Term Memory (LTM). LTM is made
up of two components, the bottom-up adaptive
filter (Zi;) and the top-down adaptive filter
(Zji) where leamning and therefore category

_ structuring occurs. The bottom-up adaptive

filter incorporates leamning into the network.
On the other hand, the top-down adaptive filter
ensbles attentional priming, matching, and
sclf-adjusting parallel search.

When the jth F2 node supplies an
appropriate maich, the top-down and bottom-up
adaptive filters, both need to be adjusted. To
understand the learning equations it is belpful
to identify an ART 2 architecture as a
an instar (fan-in) [1,11,12) combined with a
top-down outstar (fan-out) (1,10} learning
system.

For the instar coding (bottom-up
adaptive filter), the following leaming equation
is utilized:
dzy/dt = [p; - 2g] d.

That is, the weight vector (z,;,...,2y;)
keeps track of the incoming signal vector
P ("presynaptic activity ") and the Jth node in
F2 is identified as the winner with its
respective activation d ("postsynaptic activity ).
Therefore,

dzy/dt = d (1 - d) [uy/(1 - d) - z].

For the outstar leaming (top-down
adaptive filter), the following equation is
utilized:
dzg/dt = [p; - z] d.

That is, the weight vector keeps track
of the F1 activity vector P ("postsynaptic”).
d is the activation of the winner node (Jth)
in F2 which is the incoming signal
("presynaptic activity®). Replacing pi by its
value when the Jth F2 node is active will result

in:
dzy/dt = d (1 - d) [u/(1 - d) - zg].

Two kinds of leaming could be
distinguished in ART 2: slow and fast. As
a difference with ART 1, the fast leaming case
in ART 2 can not be reduced to algebraic
equations.

The orienting subsystem helps to direct the search for categories. It is connected to F2 and FO in the
attentional subsystem. When the orienting subsystem is activated, if the degree of similarity between vectors U and
P is greater than the vigilance factor, then the network will resonate, otherwise the winning F2 node will be reset.
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ART 2-A ("ALGORITHMIC" ART)

ART 2-A is a special case of ART 2 designed for large-scale pattern recognition tasks [8). Its algorithmic
type nature lends itself for rapid prototyping in hardware and software.
ART 2-A bas three fields: FO, F1, and F2. The output of the F1 field is the vector I defined by:
I = normal(f(normal(1%))
where 1° is the input vector of dimeasionality M, normal is an operator defined by:
normal(x) = x/| |x}| . :
and f{) is a piecewise linear function .
The LTM vector in ART 2-A is scaled, and it could be interpreted as the LTM vector of ART 2 divided by
,ll(l-d).AsinARTz.theFZnodeARTZ-AmkeucboiceiftheJthnodebewmesmg;imdlyucﬁve.lnaddiu'on.
‘the F2 STM sctivation represcats the degree of match of the vector I and the scaled LTM vector. LTM adjustments

FUZZY ART

Fuzzy ART (9] incorporates the basic architecture and neuro-dynamics of ART systems. Fuzzy ART is
designed as a generalization of ART 1. However, the set theory intersection operator (()) of ART 1 is replaced by
the fuzzy set theory conjunction (A). This fuzzy operator makes Fuzzy ART capable of handling both analog and

Nevertheless, Fuzzy ART has also other features that is possible to find in other ART families beside ART1
such as:

a) Fast-commit slow-recode
b) Input pre-processing .
For each input preseated to the network, the net value is calculated as
L@ = |1 A Wi|/(a + IWjl), & = 0.0001 (in our implementation)
1 is the input vector and w; are{'l'M traces. If vigilance criteria is met i.e
A Wil/I} >= p

then learning takes place,

W = A WSS + (1- gwH
where, 0 < 8 < 1,and § = 1 i.c fast leamning

FUZZY ARTMAP

FUZZY ARTMAP (6] is a supervised learning of recognition categories in response to arbitrary sequences
of analog or binary inputs. It incorporates two FUZZY ART modules i.e FUZZY ARTa and FUZZY ARTb that
are interlinked through a mapping field F*®. The inputs to the FUZZY ART modules are presented in complement
form i.e A =(a, &) (Figure 5). ,

During training, at the start of each input presentation the FUZZY ARTa vigilance factor equals the baseline
vigilance of F,, and the map field vigilance parameter is set to 1. when a prediction by FUZZY ARTa is
disconfirmed at FUZZY ARTD i.e F*® output vector X,, = 0, match tracking is induced. Match tracking rule
raises the module a vigilance to

|Xa|/|A} + 0.0001 (in our implementation),

Where, |X*| = |A A W*| . "A’ is the input i.e A =(a, a°), X, is the output vector of FUZZY ARTa
module, |X| is summation of nlf the components of X, and W;! is the weight vector from the jth output node of
FUZZY ART module a to F,, .

When Match tracking occurs, Fuzzy ARTa search Jeads to activation of another output neuron.If the
prediction by FUZZY ARTa is confirmed at FUZZY ARTD (F*® output vector Xab = 1), Map field leaming takes
place. J leams to predict the FUZZY ARTD category K, and sets Wy, *® = 1.
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