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»Preface

It might indeed be difficult to justify another text on undergraduate
electromagnetic fields, except that this work grew out of some specific needs
in the electrical engmeermg curriculum at the University of Colorado that
might conceivably extend to similar needs existing elsewhere. Until a few
years ago, -the junior-level two-semester sequence in introductory field and
wave-transmission theory covered static electric.and. magnetic fields. during
the first semester (employing a more conventional fields text written from the
“historical” point of view), and then (using another text, or.texts), the second
semester covered principally the theory and applications of transmission lines
and waveguides, plus an introduction to antenna theory and radiation. The
problems arising from this scheme lay in the fact that in using two or more
textbooks, the differences in approach and in symbohc notations contributed

_ to a substantial loss of time required in relearning some of theideas that should
have -carried over .srp'oothly from the. first .semester’s work. Moreover, in
developing static fields from the historical approach (via the experimental
Coulomb and Ampére laws), the understanding of the underlying Maxwell’s’

" equations was deferred until nearly the end of the first semester, judged by

ttus author to be a major disadvantage. :

. The present text represents -an effort. to allay these dlfﬁcultles It is thb '
culmmatlon of several prehmmary versions, used in the classroom for njore
than seven years at the University of Colorado and by colleagues at tHree

>other unlvel;smes. Importaqt features of- tms book mlght be summarized, as
follows: . i \,

. 1. Maxwell’s equatmns are postulated for free space at the outset and thén _
developed for material regions, along with the boundary conditions, within

vil
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- the first three chapters Applications to both static and time-varying problems
illustrate this deyelopment. A full treatment of electrostatic -and magneto-
static fields as spec:al cases is then offered in Chapters 4 and 5, permitting
- a smooth transition to quasi-static time-varying fields in those chapters. This
~ much material ordinarily comprises one semester’s work.

2. Prerequisites assumed of the student are a freshman- or SOphomore-level
course covering differential and integral calculus. Vector analysis concepts
as needed throughout this text are presented in the first two chapters. While
the principal applications of vector ideas in this text involve the rectangular,
circular cylindrical, and spherical coordinate systems, the generalized coordi-
nate system is chosen for developing the concepts of dot and cross products as *

‘well as the gradient, divergence, and curl operators. Some years of experience
‘with various approaches to vector analysis presentations as well as observa- .
tions of students’ responses have convinced the author that introducing these
subjects in generalized form provés a time-saver by embracing the varicus
“coordinate systems within a single treatment.

3. In Chapters 4 and 5, on static and quasi-static electric and magnetic
fields, the topics of capacitance and inductance are given detailed treatments.
Besides the usual approaches via energy and voltage, capacitance is attacked
by use of the. flux-plotting method and extended to the capacitance-con-
ductance analog. Self- and mutual inductarnces are given more than average

~ consideration, with their energy definitions developed for both nonlinear and
linear devices, together with seven detailed examples worked out in'Chapter
5. : . . _ .
4. Chapters 6-11 are suitable for a second semester emphasizing wave-
guides and transmission lines plus an introduction to antennas. Chapter 6
* represents a departure from the conventional manner in which transmission-
line methods are usually broached. ‘The student is introduced simultaneously.
to simple boundary-value problems of electromagnetics and to the analysis of
wave-transmission systems via the problem of reflected and transmitted
plane waves at normal incidence in a multilayered system. This generic
- plane-wave approach emphasizes the universality of impedance, reflection
coefficient and Smith chart concepts. it has been found to provide additional
mmght into the wave structures of transmission lines with reflections, a topic
considered in dstail later in Chdpters 9 and 10, while developing basic abilitiés
in handling reﬂecnon and transmassxon problems of radlo-wave and optlcal
systems.

5. Chapter 7 gives an modepth treatment of the real-tnme and complex
forms of the Poynting theorem relative to electromagnetic energy and power,
with applications to plane waves in lossless and lossy regions. A thorough-
‘going discussion of rectangular hollow waveguide modes is found in Chapter

8, including the concept of group velocity and wall-loss attenuation. The TEM
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waves of ‘ltwo-cbnduCto:r transmission lines are described in Chapter 9, using

static-field theory developed in Chapters 4 and 5 to derive line parameters

for the lossless and lossy cases. Chapter 10 continues with reflections on
* transmission lines, drawing from the background of Chapter 6 and including

additional applications of the Smith chart, in both impedance and admittance
forms, to standing-wave and impedance-matching problems. A consideration
of time-domain nonsmuso:dal wave reﬁecuons on lossless lines rounds out

the chapter.

6. In Chapter 11, several aspects of antenna radiation are covered in

- greater depth than in most texts at this level. These include the Green’s

theorem to develop the radiation integral, Pocklington’s theorem for current
distributions on thin wires, the radiation from a center-fed dipole, and the use
of the equivalence théorem to find the radlatlon fields of aperture souroes
such as horn antennas and lasers.

7. An effort has been made to achieve a balance between the depth of
presentation of the theoretical background and the applications via solved
problems. Numerous worked-out examples throughout the text provide the
student with a useful self-study aid, while gwmg the instructor greater flexi-
bility in his classroom presentations..

A new book must invariably draw from the works of many authors here
a clear indebtedness to the anthors listed in the references should be men-
tioned. Special gratitude to two of my former teachers, J. L. Glathart and
E. €. Jordan, from whom much of my early encouragement was derived, is
acknowledged.

While preparing the several earlier versions of this book, many dlswsswns
with colleagues and students were of inestimable benefit. Comments by
Robert Bond, Ivar Pearson, James Lindsay, Ray King, Paul Klock, David
Chang, and Ezekiel Bahar were most helpful, as well as those of anonymous
reviewers, The development of this text has been quite rewarding, due in

~ great part to the unflagging spirit of my students, whose remarks have been

greatly appreciated. Also acknowledged are the encouragement and support
of F. S. Barnes, whose leadership, vision, and indefatigability as Chairman

* of the Electrical Engineering Department have added materially to this toxt,

Special thanks go to Mrs. Charlotte Beeson and Mrs. Marie Krenz for
their excellent typing efforts. Lastly, the author would like to thank any

teaders who forward corrections or suggestions for improvements,

Boulder, Colorado -~ + = Carl T. A. Johnk
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CHAPTER
1

| Vector Analysns
and Electromagnetlc Fields
in Free Space.

The important beginnings of vector analysis as a branch of mathematics
‘date back to the middle of the nineteenth century, and since that time it has
developed into an essential ingredient of the background of the physical
scientist. The object of the treatment of vector analysis contained in the first
two chapters is to serve the needs of the remainder of the book. Scalar and
vector products, and tertain integral processes involving vectors.are de-
veloped, providing a groundwork for the Lorentz force effects which define
the electric and magnetic fields, and for the postulated Maxwell integral
relations among these fields in free space. Attention is focused on the general-
ized orthogonal coordinate system, with examples framed in the more com-
| mon cartesian, cxrcular cyhndncal and spherical systems.

. 1-1 Scalar and Vector Fields

A field is taken to mean a mathematlcal function of space_ and time. Fields
can be classified as scalar or vector fields. A scalar field is a function having,
at each instant in time, an assignable magnitude at every point of a region in
space. Thus, the temperature filtkd T'(x, y, z, t) inside the block of material
of Figure 1-1(a) is a scalar field. To each point P(%, y, z) there exists a corre-
- sponding temperature T(x, y, z, t) at any instant ¢ in time. The velocity of a
fluid movmg inside the pipe shown in Fxgure 1- ITb) illustrates a vector field.

550
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63



2 Vector Analysis and Electromagnetic Fields in Free Space
(2) | | r
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o (b)
Figure 1-1. Examples of scalar and vector fields, (a) m..'mm field
inside & block of material. () Fluid veloeity field fuside a pipe ofdmnging

: .grou-ueﬂom

A variable dlrectlon, as well as magmtud of the fluid velocity occurs in the
pipe where the cross-sectional area is changing. Other examples of scalar
fields are mass, density, pressure, and gravitational potential. A force field,
a velocity field, and an acceleration field are examples of vector fields.

The mathematical symbol for a scalar quantity is taken to be any letter:
-for example, 4, T, a, f. The symbol for a vector quantity is any letter set in
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. / /‘T\ I \*7
A g Unit — \g.\)
B=C vector a \‘/ﬁa :

Figure 1-2. Graphic repiueutations of a vector, equal vectors, a unit
- vector, and the representation of magnitude or length of a vector. ‘

boldface roman type, for example, A H a g Vector quantities-are repre-
~ sented graphically by means of arrows, or directed line segments, as shown in
Figure 1-2. The magnitude or length of a vector A is written'|A| or simply. 4,

a positive real scalar. The negative of a vector is that vec.or taken in an
" opposing direction, with fts arrowhead on the opposite end. ‘A unit vector is,
any vector having a magnitude of unity. The symbol a is used to denote a unit
vector, with a subscript employed to specify a special direction. For example,
a, means a unit vector having the positivé-x direction. Two vectors are said
to be equal if they have the same direction and the same magnitude. (They
need not be collinear, but only parallel to each other.)

1-2 Vector Sums' :

The vector sum of A and B is defined in relation to the graphic sketch of
the vectors, as in Figure 1-3. A physical illustration of the vector sum occurs
in combmmg dxsplaccments in space. Thus, if 4 particle were displaced con-
secutively by the vector distance A and then by B, its final position would be
denoted by the vector sum A + B = C shown in Figure 1- 3(a). Reversing
the order of these displacements provides the same vector sum C, so that -

A+B=B+A | 1-1)

A

, @ (b)
Figure 1-3. (a) The graphic definition of the sum of two vectors. (5) The
associative law of addition. o
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the commutative law of the addntlon of vectors. If several vectors are to be
added, an assoclatlve law

(A+B)+D A+(B+D) - (1-2)

follows from the deﬁmtlon of vector sum and from Flgnlxrc 1-3(d).

1-3 Product of a Vector and & Scalar

If a scalar quantity is denoted by u and if B denotes a vector quantity, their
product ¥B means a vector having a magnitude u times the magnitude of B,
and having the same direction as B if u is a positive scalar, or the opposite
direction if u is negative. The following laws hold for the products of vectors
and scalars:

uB = Bu . Commutative law (1-3)

~u(vA) = (w)A Asgociati\{e law™  (1-49)
(4 +)A =uA + vA Distributive law  (1-5)
#A + B) = A + uB Distributive law  (1-6)

14 Coordinate Systeins

The solution of physical problems often requires that the framework of a
coordinate system be introduced, particularly if explicit solutions are being
sought. The system most familiar to engineers and: scientists is the cartesian,
or rectangular coordinate system, although two other frames of reféerence
often used are the circular cylindrical and the spherical coordinate systems.

The symbols employed for the independent coordinate variables of these
" orthogonal systems are listed as follows:

1. Rectangular coordinates: (x, y, 2)
‘2. Circular cylindrical coordinates: (p, $, 2)
3 Spherical coordinates: (r, 8, ¢)

A useful applncatlon of the product of a vector and a scalar occurs in the
~ specification of a vector quantity in terms of its components. The present
discussion of this idea is limited to orthogonal coordinate systems. A-typical
point P is ideniified in space with each of the commion coordinate systems in,
Figure 1-4(a). At that point the unit vectors of each system are defined to
' he in the positive increasing direction of the appropriate coordinate variable,

as shown in Figure 1-4(b). The symbol a subscripted with the desired co-
ordinate variable is used to denote the unit vectors of a particular coordinate
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Rectangular Circular cylindrical Sphericat
(c)

Figure 1-4. Notational conventions adopted in the three common co-
ordinate systems. (@) Location of & point P in space. (5) The unit vectors
at the typical point P. (c) The resolution of a vector A into its orthogonal
components. ' ’




6 _ Vector Analysis and Electromagnetic Fields in Free Space

system. Thus a,, a,, a, are the unit vectors in the rectangular system. In
(c) of that figure is shown a typical vector A resolved into its components}
in each of those coordinate systems, denotcd symbolically as follows:

= 4,4, + a,A, + 8,4, Rectangular .
A = a,A, + a,A, + a,A, Circular cylindrical (I-7)
A=aAd + a4, + ad,Aq, Spherical

while the magmtude (length) is given by:

= [AL + A} + AZ]Y? Rectangular - ‘
A = [A%2 + A3 + A2]'* Circular cylindrical (1-8)
= [4? + A3 + A3]** Spherical

For the sake of unifying and compacting -the subsequent developments
concemmg scalar and vector fields, a system of generalized orthogonal
coordmates is mtroduced in which u,, u3, u denote the coordinate variables.
The typncal point P(u,, uy, us) in space is the intersection of the three con-
stant surfaces u, = C;, us = C,, and u; = Cs. The intersections of pairs of
these surfaces define the coordinate lines; e.g., the coordinate line labelled u’l
is defined by the surfaces u, = C, and us ='C; shown. These ideas are
exemplified in Figure 1-5 by the three common coordinate systems; thus, in-
spherical coordinates, the intersection of the coordinate surfaces r= constant
and 8 = constant is a circle. :

The unit vectors a,, a;, and a5 are mutually perpendicular and lie tangent
to the coordinate lines through the typical point P of Figure 1-5. If a vector
A is associated with the point P(u,, u3, 4,) in that figure, it may be expressed
symbolically in terms of its generalized orthogonal components by

A = a4, + 8,4, + 8,45 Generalized orthogonal (1-9)
its magnitude being | _ _
A =[]+ 45+ 4301 - (1-10)

The scalars 4,, 45, and A, are cﬁll,ed the components of the vector A. Ex-
amples of these expressions specialized to the three common coordinate
systems have already been given in (1-7) and (1-8).

1+ Thus, the components of A in the rectangular coordinate system are the vectors a.A4.,
a,A,, and 2,4,. Another common usage is to refer to only the scalar multipliers 4., 4,,
and A, as the components of A, although it may be considered more proper to call these
scnlam the projections of A onto the respective coordinate axes.



