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Preface

There is no longer any need to sell the finite element method as a
technique for solving partial differential equations. This is particularly
so in the case of elliptic equations where at the moment it has taken
over from the finite difference method. It is a good example of a topic
which transcends many boundaries and its development has only been
made possible by cooperation between engineers, mathematicians and
numerical analysts. Because of the breadth of interests of its devotees it
is easy to convince oneself that there is.not a suitable text on the finite
element method, a point of view which has led to a rapidly growing
literature on the subject. The material in the present book is intended to
bridge the gap between the well known works of Zienkiewicz (1971)
and Strang and Fix (1973), which represent the finite element interests
of engineers and mathematicians respectively. At no time do the present
authors take sides in the long-standing controversy regarding the relative
merits of finite difference and finite element methods. It is sufficiently
gratifying to know that two such powerful techniques exist for the
. numerical solution of partial differential equations.

Most of the book is aimed at final-year undergraduate and first-year
postgraduate students in mathematics and engineering. No specialized
mathematical knowledge is required for understanding the material
presented beyond what is normally taught in undergraduate courses on
vector spaces and advanced calculus. An exception to this is Chapter 5,
which can be omitted on a first reading of the book, Hilbert space and
functional analytic concepts are introduced throughout the boek mainly
from the point of view of unifying material. Only a working knowledge
of partial differential equations is assumed since anything beyond this -

would seriously limit the usefulness of the book. Since a variational
* principle rather than a partial differential equation is often our starting
point, a chapter on variational principles is included with suitable
references to more advanced wqus on the subject. '

We hope that practical users of the finite element method will also
find the book useful. For their benefit we have covered as many variants
of the finite element method as possible, viz. Ritz, Galerkin, least
squares and collocation, and in Chapter 4 we have given a large selection
of possible basis functions to be used with any of the above methods.
To balance this overcoverage of material in particular areas we have
omitted eigenvalue problems. Our reason (or excuse) is that these are



vill

more than adequately covered in Chapter 6 of Strang and Fix (1973).

The list of references is restricted to those texts actually referred to
in the book. For a more complete list of references see A Bibliography
for Finite Elements by Whiteman (1975). Some recent texts and con-
ference proceedings devoted mainly to finite element methods are listed
in the references for the convenience of interested readers. These are
Zienkiewicz (1971), Aziz (1972), Oden (1972), Strang and Fix (1973),
Gram (1973), Lancaster (1973), Miller (1973, 1975), Whiteman (1973,
1976), Watson (1974, 1976), De Boor (1974), Oden, Zienkiewicz,
Gallagher and Taylor (1974), and Prenter (1978).

Much of the material in this book has been presented in the form of
lectures to Honours and M.Sc. mathematics students in the Universities
of Dundee and Liverpool. Also at the invitation of the Institutt for .
Atomenergi the former author lectured on the material of Chapters 2
and 4 at the Nato Advanced Study Institute held in Kjeller, Norway in <
1973, and the latter author lectured on the material of Chapters 3, 5
and 6 at the Technical University of Denmark during an invited stay
there in 1973.

In the preparation of this book, the authors have benefited greatly
from discussions with colleagues and former students. Special thanks
are due to Bob Barnhill, Lothar Collatz, David Griffiths, Dirk Laurie,
Jack Lambert, Peter Lancaster, Robin McLeod, Gil Strang, Gene
Wachspress, Jim Watt and Olek Zienkiewicz. Final thanks are due to
Ros Dudgeon and Doreen Manley for their expert typing of the
manuscript.
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Chapter i |

Introduction

1.1 APPROXIMATION BY PIECEWISE POLYNOMIALS

Consider initially the problem of approximating a real-valued function
f(x) over a finite interval of the x-axis. A simple approach is to break
up the interval into a number of non-overlapping subintervals and to
interpolate linearly between the values of f(x) at the end points of each
subinterval (see Figure 1(a)). If there are n subintervals denoted by
[x: x41] (i=0,1,2, ..., n—1), then the piecewise linear approxima-
ting function depends only on the function values f; (= f(x;)) at the
nodal points x; (i = 0,1,2, ..., n). In a problem where f(x) is given
implicitly by an equation (differential, integral, functional, etc.), the
values f; are the unknown parameters of the problem. In the problem
of interpolation, the values f; are known in advance.

In the subinterval [x;, x;+, ], the appropriate part of the linear
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approximating function is given by

Pgi)(x) = (x)f; ¥ Biv1 (X)fiv1 (i SX S Xijv ), (1.1) -
where
Xjsy —X x —x;
a(x) = =—— and B (x)=———(i=0,1,2,...,a—1).
Xi+1 — X Xiv1 X

Hence the piecewise approximating function over the interval
xg Sx <x, is given by :

n .
pi(x) = ,Eowi(x)f.-, . : (1.2)
= .
where
X;—X
: - (xo Sx<x,)
Po(x) = *i T %o
0 ' (x; £x<x,),
[0 . (xo <'x<x;_1)
xX—Xi_y ‘
Z T (ko <x<x)
Xi —Xi—1
N = Xs - (1'3)
G B TE Ca<mn) -
Xi+y — X
[ 0 (%01 SxS%xn),
and _
0 (xo Sx<xp_1)
x)=4{ x—x,_
on (*) X ot (2 -1 Sx<x,)
Xn — Xn-—1

are pyramid functions illustrated in Figure 1(b). The pyramid functions
given by (1.3) represent an elementary type of basis function. In
particular the basis functions ¢;(x) (i=1,2,...,n—1)are identically
zero except for the range x;_; < x < x;4;, and are said to have local
support. Throughout this text, basis functions will be constructed of
varying degrees of complexity but always with local support. A funda-
mental property of most basis functions is that they take the value
unity at a particular nodal point and are zero at most of the other nodal
points. ' '

In general, the first derivatives of the piecewise approximating poly-
nomial p, (x) given by (1.1) are not the same as f(x) even at the nodes.
Consequently we now look at the possibility of constructing a piecewise



e, (x)

(b)
Figure 1b -

approximating function which has the same values of function and first
derivative as f(x) at the nodal points x; (i = 0,1,2, . . ., n). In mathe-
matical terms, we have to construct a piecewise cubic polynomial p; (x)
such that ' ’

Dkf(xi) =‘ ka3(xl) (k=0,1;i=09192’ v $n)9

where D = d/dx. In the subinterval [x;, x;+, ], the appropriate part of
the approximating cubic polynomials is given by

P§Y(x) = ou(®)f; * Bivy (*)firs + V(@i + 8ia ()i, (1.4)
where '
C(xi —x)? [(xp0 —x) + 2(x —x)]
o5(x) = : 3 5
(Xi+1 _xi)
Bivy (x) = (x — %) [(xi41 — ;) +32(xi+1 —x)] ,
(%541 —x;)
’ (x = x;)(xi+1 — x)?
{x) = 1.5
7,(x) (xi —x)? (19
and '
b ) = B = i)

(xi+1 —“xi)3

(i=0,1,2,...,n—1)and where ' denotes differentiation with respect
to x. The piecewise approximating function over the interval



Xo S x < x, is given by

n .
ps(x) = T [P0 + £ f ], (1.6)
ic
where the cubic polynomials ¢{®(x), ¢{!)(x) (i =0,1,2, ..., n) are
easily obtained from (1.5). The basis functions ¢{®)(x) and ¢{*)(x)
(i=1,2,...,n—1) are illustrated in Figure 2.

The basis functions in (1.2) and (1.6) arise from particular cases
of piecewise Hermite interpolation (or approximation) for a partitioned
interval. In more general terms, let l:a =x; <x; <...<x, =b
denote any partition of the interval R = [a, b] on the x-axis. For a
positive integer m, and a partition I of the interval, let H = H Un)(11, R)
be the set of all real-valued piecewise polynomial functions w(x) defined
on R such that w(x) € C™ ! (R) and w(x) is a polynomial of degree
2m — 1 on each subinterval [x;, x;+, ] of R. Given any real-valued func-
tion f(x) € C™ ! (R), then its.unique piecewise Hermite interpolate is
the element p,,,;_; (x) € H such that

O<k<m—1)

(0<i<n). (3.7

D*f(x;) = D*paypm_, (%)
The particular cases m = 1,2 have already been dealt with and produce
the basis functions given by (1.2) and (1.6) respectively. Error estimates
for piecewise Hermite interpolates are given by Eirkhoff, Schultz and
Varga (1968). _

In problems where only f(x) has to be determined, it is often undesir-
able to introduce derivatives of f(x) as additional parameters and so
cause a considerable increase in the order of the system of equations to
be solved. Consequently a very desirable property in piecewise funétions
might be continuity of derivatives at the points at which pieces of the
polynomials meet without introducing the values of the derivatives as
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additional unknown parameters. The simplest example of this approach
is the fitting in each subinterval [x;, x;4+;] (i=0,1,2,...,n—1)of a
quadratic such that the first derivatives are continuous at each internal
nodal point x; (i=1,2, ..., n—1). A convenient form for this piece-
wise approximate, known as the quadratic spline is

SP(x) =f; + I”—'—:-’l (x —x;) * cilx —x;)(x = X401 )
Xi+1 — X
(i=01,2,...,n—1) (1.8)

and the continuity of the first derivatives leads to
1 . , :
it =3 (fiss —2f; +fiy) (i=12,...,n—1), (1.9)

where the nodal points in the interval have been taken equally spaced,
distance h apart. Equation (1.9) gives (n — 1) linear relations between
the n unknown coefficients ¢; (i = 0,1,2, ..., n —1), and so in the case
of the quadratic spline there is one free coefficient. Since Sg") (x) = 2¢;
(i=0,1,2,...,n—1), aknowledge of the second derivative at any
point completely solves the problem.

The most popular form of the spline is the cubic spline. Here, given
the values of f; (i = 0,1,2, . . ., n), we fit cubic polynomials between
successive pairs of nodal points and require continuity of both first and
second derivatives at all internal nodal points. In this case, if Sgi)(x)
(i=0,1,2,...,n—1)is the required cubic spline, then Sé’) (x) must be
linear in [x;, x;+; ], and so :

S(3i)"(x)4= Ci x”_l ad + Ci+y G
-Xiv1 T Xi Xi+1 — X;

(i=012,...,n—1)

where c;, ¢;+; are the values of the éecond derivatives at x;, x;+; respec-
tively. This form ensures continuity of the second derivative at the
internal nodal points. After applying the further conditions

SP(x;) =f;

SP(xi41) = finr
and

S¢V (x) =89 x) (=12,....n—1),

the cubic spline is obtained in the form

(i=012,...,n—1)

C; - C; f. hc
SP () = o (e =2 + 08 (@ —x)T + (;‘ —?')(xm — %)

hen (1.10)
+(-£’;—1——cé—])(x—x,-) (i=0,1a2_)~"’n_1)’ .



where the nodal points are equally spaced, and the (n + 1) coefficients
¢; (i=0,1,2,...,n)are given by the (n — 1) linear relations ‘

. 6 .
Civg Ydci+cy = "1’5 (firn —2fi +fioq) (=12,...,n—1).

(1.11)

The two free parameters in the case of the cubic spline are often
removed by taking ¢y = ¢, =0, and hence the other parameters are
uniquely defined by (1.11).

A more natural form of the cubic spline for equally spaced nodal
points in the interval I = [0, b] is

x x x\2 x\3 n-1 x 3
5:(5) me0van () ren (5) +ea(3) +En(-0).

where

——s (iE >s) .
h h

It can easily be verified that S;(x/h) and all its derivatives except the
third are continuous at the (n — 1) internal nodal points

x; (i=1,2,...,n—1) for all values of the (n + 3) coefficients

g, 0y, 02,03,08 (s=1,2,...,n—1). Applying the condition

&(:) fi (=012, ...,n), (1.13)

there are (n + 1) linear relations for the (n + 3) cbefficients, and so
there are two free parameters. The system of linear equations reduces
to the form given in Exercise 4. If the cubic spline (1.12) involving two
. arbitrary parameters is now expressed in the form

x n x
s:(3) = 2rci (3) | (114)

where Cy(x;/h) = 1, C;(x;/h) =0 (j #1), (i,j = 0,1,2, . . ., n), the cardinal
splines C;(x/h) obtained do not have local support and are not practlcal
basis functions.

" Cubic spline functions with local support of 4k were introduced
as suitable basis functions by Schoenberg (1969). At nodal points

=jh (i=2,3,...,n—2), away from. the ends of the interval, these



take the form

5.(2) <2 fE-u-)) oo o]

—4{%—(“1)}? + {%—(HZ)}i]. (1.15)

These functions and their first two derivatives are zero for
—oo<x/h<i—2andi+2<x/h <+ Also

-

Bi(i—1)= 19(;+1)-'1 B()=1 (i=23,...,n—2).

The remaining functions By (x/h), B, (x/h), B, _1 (x/h), B, (x/h) require
specidl consideration. By setting

X n x
Si{—) =2 vBi| T : .
() =& (z): (1.16)

and matching the right-hand sides of (1.14) and (1.16), a tridiagonal
system of linear equations is obtained which enables the coefficients
7 (i=0,1,2,...,n)in (1.16) to be obtained. The majority of the
equations in this system are given by

1 .
7i+z(7i+l tyi_ )= ((=23,...,n—2).

Bivariate approximation,

We now consider the problem of approximating a real-valued function
of two variables by piecewise continuous functions over a bounded
region R with boundary dR. The region is divided up into a number of
elements and the particular shapes of region con51dered at this stage are
1) rectangular and (2) polygonal Lo C oy

R ;
1) Rectanguiar region. The sides of this region are parallel to the x- and
y-axes, and the region is subdivided into similar rectangular elements by
drawing lines parallel to the axes. Let the rectangular region be
{xos xm] X [¥0,¥n] and a typlcal element be [x;, x;+;] X (¥, %411,
where x;,,; —x;=h, andyj,; —y;=h, (0<i<m—1,0<j<n—1)
(see Figure 3). The bilinear form Whlch interpolates f(x,y) over the
rectangular element is '

P (x,y) = o j(x, )i ; + Bivr, i Wivr,j + Vi1 (x,y)fzj,,'u
' + 801, jr1 (X fie1 j+15 o (1.17)



n
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Figure 3
~ where
1
o, j(x,y) = ;l—lh_z'(xiﬂ —x)(¥j+1 — ),
Bi+y, j(x,¥) = hih (x — %) (¥j+1 —¥),
. ' 1
Vi, j+ (%) = h—l';; (xi+1 — )y —¥})
and
6i+1,;‘+’1 (x,y)= hy hz (x — xz)(y y;)
(0<i<m—1;0<j<n—1). The piecewise approximating function

over the region [xq, X,n 1 X [Yo, ¥»] is given by

m n ’ 2
pi(xy)= Z __20 @1, /(%9 )i, (1.18)
"The basis functions y; ;(x,y) (1 < —1;1<j<n—1)are identi-

cally zero except for the rectangulax reglon [2i— 1, Xis1] X [¥j—1, ¥j+1l,
and so have local support (see Exercise 6 and Figure 3).

The case just considered is the simplest example of piecewise
bivariate Hermite interpolation (or approximation) over a rectangular
region subdivided into rectangular elements. In more general terms, for
any positive integer /, and any subdivision of the rectangle R into
rectangular elements, let H = H' O®) be the collection of all real-valued



Figure 4

piecewise polynomials g(x,y) defined on R such that g(x,y) €C'~" '~ (R)
and g(x,y) is a polynomial of degree 2{ — 1 in each variable x and y'on
each rectangular element [x;, x;4,} x [y;, yj+1] (0<is<m—1;

0 <j<n—1)of R. Given any real-valued function f(x,y) € C'~ "/~ 1(R),
then its unique piecewise Hermite interpolant is the element

Dyt (x,y) €H suc»h that

D(qu)f(xi,yi) = D(p’Q)P21~ 1(x,5})

foral0<p,g<I—1,0<is<m—1,0<j<n—1. The particular
case [ = 1 has already been dealt with and leads to bilinear basis
functions of the type shown in Exercise 6. The case [ = 2 is covered in
Exercise 7. The interested reader is again referred to Birkhoff, Schultz
and Varga (1968) for error estimates of bivariate Hermite interpolation.

(2) Polygonal region. This can either be a region in its own right or an
approximation to a region of any shape. The polygon is subdivided in
an arbitrary manner into triangular elements. In a typical triangular
element with vertices (x;,y;) (i = 1,2,3) (see Figure 4), the lineal form
which interpolates f(x,y) over the triangular element is

3
pi(x,y) = .:21 o (%, )f;, _ (1.19)

where f; =.f(x;,y:) (i = 1,2,3). The coefficients o;(x,y) (i = 1,2,3) are
given by .

1
g (x,y) - C—_(Tza +M23x — £23Y),
123

, 1
ay (x,y) = (731 * 131X —£31Y) (1.20)
Cias
and

1 ,
a3(x»y)"6_——(712 +012x — £12Y)s
123
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where | C;,3 | is twice the area of the triangle, and
Tij = X5Yj — XjYis
Ej=x—x (L/=123)

and,
N =Yi—Y;

The functions given by (1.20) are of course only parts of the complete
basis functions associated with vertices of a triangular network. The
.complete basis function with respect to any vertex is obtained by
suinming the appropriate parts associated with the triangles adjacent to
the vertex. For example, the vertex 1 in Figure 4 has five adjacent
triangles and so the basis function associated with this vertex has five
parts. The complete basis function is known as a pyramid function.

Exercise 1 Show that the cubic polynomial p; (x) which takes the values
p3(0) =fo, p3(1) = f1,P3(0) = fo, P3 (1) = f1,
is given by
p3(x)=(1 —x)2 1+ 2x)fo + x(1 —x)2fo + x2(3 — 2x)f,
+x%(x —1)f].

Exercise 2 Use the result of Exercise 1 to obtain the coefficients in
equation (1.5), and hence obtain the basis functions in equation (1.6).

Exercise 3 Using the method outlined in the text, obtain the equation of
the cubic spline in the form (1.10), where the coefficients are given
by (1.11).

Exercise 4 Applying the condition (1.13) to the sphne given by (1. 12),
show that the system of equations for the coefficients in (1.12) reduces
to ' .

Bi1 +4B;+Bisy =8%f; (i=28,...,n—2),
6y + 58, + B, =6%f3p2,
20, +603 + B, = 8%f,
-0 +°‘2>+a3 =6f12, -
oy = fo,
-where § is the usual central difference operator.

Exercise 5 Solve the set of equations in Exercise 4 for o; = a, = 0 and
n = 4. Show that in this case, using (1.14), that

x X" 3 x 3 x 3
)= (E-1) -8 ——2) +37(——3
C’(h) (h )+ (h . h .

<



