AN INTEGRATED
APPROACH TO
SOFTWARE
DEVELOPMENT

RUSSELL J. ABBOU 11

AN INTEGRATED
APPROACHTO
SOFTWARE
DEVELOPMENT

RUSSELL J. ABBOTT

A Viley-Interscience publication
JOHN WILEY & SONS

New York ¢ Chichester Brﬂ‘ne’ * Toronte -+ Singapore

Copyright © 1986 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permissicn
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data
Abbott, Russell J., 1942-
An integrated approach to software development.

*‘A Wiley-Interscience publication.’

Bibliography: p.
Inciudes index.
1. Computer software—Development. 1. Title.

QA76.76.D47A23 1985 001.64'25 85-9427
ISBN 0-471-82646-4 .

Printed in the United States of America
10 9 87 6 5 4 3 21

26 - LIRBA

X1

PREFACE

This book is intended as a text in software engineering courses and as a day-to-day
working reference for practicing software engineers.

1. It could be used as a software engineering text in computer science depart-
ments and in systems analysis courses in business and engineering. In the
latter capacity chapters 2 and 3 would be most relevant.

2. For practicing systems analysts, software engineers, and programmers this
book can sérve as a useful reference for the development of requirements and
software design documents, system specifications, and testing documenta-
tion.

The format of this book makes it easy to adapt to both purposes. It is organized
as a collection of annotated outlines for technical documents that are important to
the development and maintenance of software. These documents are not just pro- ~
vided in bare form. Their annotations explain why they are organized as they are and
why their contents are as shown. Thus the annotations are used for tutorial purposes
when necessary. To varying degrees the documents rely on relatively sophisticated
concepts and in some sections require a certain amount of formal notation. Therefore
this material is presented in the context of the documents in which it appears rather
than in the traditional academic manner. In that way its relevance is immediately -
“apparent. In addition, the outlines may be used by practitioners as models for their —
own documents.

vi PREFACE

SIGNIFICANT FEATURES

3

1. A clear digtifxction is made between requirements and behavioral specifica-
tion. Requirements refer to the needs of the end user, behavioral specifica«
tions, to a behavioral description of a system that meets thase needs.

2. To express a user’s requirements we must first understand the user’s world.
Techniques from the disciplines of artificial intelligence and databases serve
as an approach to the analysis of an arbitrary world. The ideas inherent in
these techniques provide the book with a unifying theme.

3. To specify the behavior of an arbitrary system requuts precision and clarity.
A method of expressing behavioral specifications is Med in a way that
is both rigorous and intuitive. It also includes the following:

a. The veer’s view of a system in terms of user conceptual model.

b. Operations in road-map form available fo the user for mampulaung that
conceptual model. N ,

4. For an organization to operate a system requires procedures and administra-
tion. These topics are discussed as a complement to behavioral . specifica-
tions.

5. The approach to system design stresses design in terms of reusable compo-
nents and combines into a single methodology techniques from object-ori-
ented programming, dataflow design, and stepwise refinement. A theory of
interpretive systems is developed to show how progratmmng languages and
application systems alike may be understood as interpreters. A new con-
struct, the component, captures the essense of modularity and unifies the no-
tions of types, subprograms, tasks, and objects. This methodology places
input and output in their proper perspective and is particularly oriented to-
ward design in terms of reusable components and implementation in a mod-
ern programming language such as Ada.*

6. Validation, verification, and testing are integrated into the development pro-
cedures to rescue them from their roles as the expensive black sheep of soft-
ware development.

7. The book contzins recommended outlines of documents for requirements,
behavioral specifications, procedural and administrative manuals, and sys-
tem and component design documentation.

8. An appendix presents an easy to understand formal notation for expmssmg
specification. It is structured to pesallel the syntax of programming lan-
. gauges. Thus it is comfortable for most programmers to read and write.

*Adais a trade mark of the Unitod Sasaes Department of Defonse.

2

PREFACE 4 vii
USE OF THIS BOOK IN LECTURE COURSES

The software engineering curriculum is still rather fluid. Schools package systems
analysis, specification, design, and management in various ways. This book can be
used in any of a number of senior or graduate level courses:

1. Software Engineering. It can serve as the primary text in a course in soft-
ware engineering. The entire book can be covered in a single semester, -al-
though the pace may be somewhat rapid. Readings from the references may
be used to explore in more depth topics of particular interest to the instructor.
A supplementary software engineering survey book (e.g., Pressman, 1982;
see the annotated bibliography at the end of this preface) may be used for
breadth.

2. Software System Design. It may be used as the primary text in a software
system design course in which only the chapters on system specification and
design would be covered. Readings from the literature may be selected to
explore particular topics in more depth.

3. Software Architecture. It may be used as the primary text in a course on
software architecture and design in which only the chapters on design would
be covered. It should be supplemented by readings from the literature.

4. Systems Analysis. It may be used as a primary text in a systems analysis
course in which only the chapters on requirements and specifications would
be covered. It should be supplemented by readings in the organizational use
of computer systems.

5. Software Engineering Project Management. It may be used as a secondary
text in a course on the management of software engineering projects.

The exercises throughout the book provide ample practice material and are structured
to allow (if desired) concentration on a single system. A set of exercises is included
for an appointment-scheduling system; if all are completed a full set of development
documents for such a system will be written. .

USE OF THIS BOOK IN A PROJECT COURSE

This book is ideally suited for a software eagineering project course, in which the -

students compose their own requirements, behavioral specification, design, and text

documents. : ‘
It is best to organize this class into four groups:

1. Requirements. This group is respamsible for defining the requirements of
the system to be built. '

2. Specification. This group is responsible for explaining how a system that
meets those requirements would look to the user.

vili PREFACE

3. Design. This group is respousible for designing a system that acts as the
specification group says the system should act.

4. Prototype. This group is responsible for building a working prototype sys-
tem to display the behavior that the specification group indicates. To the ex-
tent feasible the prototype should match the design created by the design
group, although time limitations may force the two to diverge.

The instructor serves both as executive director to make sure that fundamentally the
work stays on track and as ‘‘coach’’ to help the various groups to carry out their
assignments. For the most part the instructor should avoid making project-related
decisions because it is best for students to assume that responsibility.

Parallel Development

The major difficulty in teaching such a course is the limited time. Even in semester
courses there i8 never enough to prepare the documents in the normal sequential man-
ner. To accommodate the constraints documents must be developed in parallel. Start-
ing out, of course, is difficult in that the students who initiate the behavioral
specification, the design, and the prototype have nothing on which to base their
work.

Yet parallel development is not so impossible as it seems. First, it takes a while
for students to get used to the idea of producing large documents. Most computer
science students, although comfortable in program preparation, are not accustomed
to writing English and often have a rough time at the beginning. Second, it takes a
while for most students to develop a feeling for these documents. The students must
work with outlines and attempt to express their ideas within the framework that the
documents provide before they can be confident enough to begin constructive work .

Third, in general it is not absolutely necessary to complete a requirements doc-
ument before beginning a behavioral specification or to have a final behavioral spec-
ification before starting a design. ‘With the basic idea in hand of what a system is
intended to do it is generally possible to begin the behavioral specification and de-
sign. Finally, given a spirit of cooperation between groups and the appropriate per-
spective of each group’s functions, parallel development can be a very positive
approach. Each group will understand that the other groups are working out the de-
tails that its own group needs to do its work.

Parallel development can be considered constructive rather than disadvantageous.
It is often said of large systems that “‘One should expect to throw the first version
- away.’’ No matter how disciplined, the mistakes made the first time in a complex
development are generally significant enough to determine that a second try would
make a qualitative difference in the final product. Parallel development helps to mit-
igate this effect. If all the documents and a prototype version of the system are de-
veloped simultaneously each development group can benefit from the problems
encountered and the lessons learned by the others.

~ Parallel development forces an orientation somewhat different from the usual
“‘waterfall’’ chart approach. By the use of this methodology each document is driven

PREFACE . ix

by documents developed earlier and in tumn drives documents developed later; that
is, if the requirements document is fixed before work is begun on a specification the
specification must be written to satisfy the requirements stated. Similarly, if the spec-
ification is fixed before the design is begun the design is forced to implement the
system as specified. Of course, it never works out that way; problems that appear in
later phases of development force compromises with decisions apparently made ear-
lier once and for all. These compromises are frequently awkward to accommodate
and often result in hard feelings. ' .
On the other hand, if it is understood that the documents are to be developed in
parallel, that no document drives any other absolutely, and that the primary con-
straint is that the documents (and the final system) be mutually consistent at the end
of development, a spirit of cooperation and mutual respect can prevail. Each group
represents an area of expertise that it brings to bear on the result and each group can
represent its interests while understanding that the needs of the other groups must be
heard.

1. Members of the requirements group think of themselves as experts in the def-
inition of requirements. Although requirements are important, without the help of
the other groups nothing would be accomplished except stating the problem. They
recognize that the other groups are building a system to meet the needs that they
discover and document. This, of course, is traditional.

2. Members of the specification group think of themselves as experts in the def-
inition of user-friendly systems that are easy to understand and that fit the user’s
needs. Al that is needed is to have someone tell them what the user is like and what
the user-needs are. As far as they are concerned, these are details to be incorporated
into their system-defining methodology. The specification group needs the require-
ments group to provide these details and the design and prototype groups to carry
them out, but they do not see themselves as subservient to any other group any more
than a photographer is subservient to the person whose portrait is taken or to the -
people who develop the prints.

3. Members of the design group think of themselves as experts in the design of
clean, easily understandatle, well organized software. All that is needed is to have
someone tell them what the software is supposed to do. As far as they are concemed,
that is a detail to which they apply their design methodology. The design group needs
the specification group to work out the details of the appearance of the system and
the requirements group to determine whether there are other constraints to be obeyed,
but they do not see themselves as subservient to any other group any more than any
other designers are subservient to their customers. Designers bring to their jobs a
knowledge of design techniques that permit more to be accomplished than nonde-
signers might imagine and design constraints that set a limit to what is possible. Be-
cause of these talents designers often have the final say on what the product will do.

4. Finally, members of the prototype group think of themselves as experts in -
getting a computer to do what they want it to do. They can make the compiler do
tricks, they can make terminals stand on their heads, they can make the operating
system sit up and beg, and they have a bagful of other tools that turn building systems

x PREFACE

into a video game. They see the computer as their instrument and they are its masters.
All they need is to have someone give them specifications to animate. The prototype
group needs the other groups to tell them what to make the system do, but they do
not see themselves as subservient to any other group any more than a musician is
subservient to the designer of the instrument to be played or to the composer of the
music selected. Without the prototype group there would be nothing but paper; so
in the end they are most important. Also, it is often the prototype group with their
knowledge of making an actual system do real work that makes or breaks a design
and the system that depends on it.

In developing documents in parallel, we expect a lot of rewriting, but we should
expect a lot in any case. The rewriting due to too early commitments made in the
behavioral specification and design is really no different from that required to remedy
internal consistency or errors made in interpreting or ignoring parts of earlier doc-
uments.

The experience of working in the dark proves valuable. Students appreciate all
the more the importance of a well defined set of requirements when developing a
behavioral specification and the value of a behavioral specification when construct-
ing a design. They learn from their own experience that the decisions they make from
a limited perspective can sometimes get them into trouble and lead to extra work.
They also leamn how each part of the job depends on all the other parts.

Finally, it is important to point out the effects of working in groups. Even students
who began with no particular affinity for the groups in which they were placed find
themselves identifying with their thinking and defending them against the other
groups whenever disagreements occur. Each group develops its own identity and
way of working together and each group tends to think of itself as beset by the others.
Groups bargain with one another to make their own jobs easier and to bend the sys-
tem to their own points of view. It is the instructor’s obligation to hold up a mirror
so that the students who are emersed in the process can recognize and understand the
interpersonal and intergroup interactions as well as the technical issues.

Choosing the Project

‘The class project is selected from proposals written by the students themselves. At
the start of the semester each student submits a project proposal which consists of a
one-paragraph summary of its contents and one-paragraph preliminary versions of
the requirements, behavioral specification, and design documents. The class reviews
these proposals and selects one as its semester project.

Project Organization

In addition to the four groups the class is divided into committees in a form of matrix
organization. Each group has a representative on each committee. The groups are
responsible for the technical work the committees, for management and quality as-
surance.

PREFACE i

1. Management Committee. The management committee directs project plan-
ning, scheduling (and rescheduling as necessary), configuration management, and .
any other management and administrative functions that can be handled by the stu--
dents themselves.

The management committee must produce a development plan, which consists
mainly of a schedule of milestones for the production and review of documents. A
typical plan calls for the production during the semester of four review versions and
one final version of the documents to reflect complete descriptions of partial versions
(i.e., **builds’’) of the final system. s

To the extent that the instructor wants to give the students this responsibility the .

* management committee may also allocate class time. A great deal of class time may.
be devoted to reviewing documents. This is best if the class is scheduled in partas
a laboratory and in part as a lecture. It is also best if the lecture and laboratory times
run sequentially to allow work started in one period to continue into the other.

Scheduled laboratory time is also important for another reason: the students must
be assured of having some time to work together in groups. Individual student schied-
ules are often so different that whole groups can get together only during class time.

A total of five to seven scheduled hours a week works reasonably well. For a three-
unit class the hours are best scheduled as two hours of lecture and three hours of
laboratory or as one hour of lecture and six hours of laboratory.

‘Management is also responsible for additional structuring; for example, itis often .
useful for each group to appoint a liaison with the other groups. It is the job of the
liaison to meet periodically with groups to which he or she is assigned and to report
back about the work of these groups. It is a good practice to schedule a time for ‘
meetings to take place during the next to last minutes of the class session onq;
week. During that time the liaisons can make their reports to their home group:

Finally, management is responsible for keeping track of the progress of all
ects. A good method is to appomtoneofnsmmmbenasproject historian. The -
project historian’s job is to record decisions made by the committees, to keep track -
of the memberships of the'groups and committees, and to record and follow up on .
action items. The historian should submit three weekly reports to the management: -
committee which would contam the following: E

a. The current project plan and the events scheduled until the end of the se-
mester.

b. A record of decisions made and brief rationales for the decisions. These rec-
ords play an important part in all projects. Recording the decisions made
savesagreatdealofencrgymprevennngmesannlsmcsﬁombemgmr
gued and rethought. In large projects, decisions are frejucatly made but in-
adequate records are kept. The result is that later, when it is necessary to refer
to a decision (What did we decide about that question last week?) there is no
reliable means of oonﬁnmng it. Either no one remembers clearly or everyone
remembers clearly but differently. A definitive, authoritative record of de-
cisions made will save a great deal of wasted time.

xii PREFACE

c. A list of problem reports yet to be resolved and other items that require ac-
tion, each item to include the name of the individual or group responsible for
that item. This list serves as a subsidiary project agenda, parallel to the sched-
ule of document submissions and reviews of the project plan. Each action
itemn should have a scheduled completioh date. The actual date of completion
should also be recorded as part of the project history. This list of action items
provides a quick reference to trouble spots. Any document with an unusually
large number of unresolved problem reports should receive extra attention.

2. Quality Assurance. The quality assurance committee is responsible for
guaranteeing the overall quality of the project. It sets documentation standards and
determines that each group’s work is internally consistent and complete and that the
. groups are consistent with one another.

The quality assurance activity is concerned with consistency within and between
documents and with document quality in general; for example, clarity of the writing.

As its first task quality assurance should define a problem report form for record-
ing problems and a separate problem report should be issued for each problem. Prob-
lem reports may be initiated by anyone in the class (e.g., a member of a working
group) as a way of anticipating a potential problem with another group’s document
and by the Quality Assurance group itself. There should be a problem report issued
for each problem quality assurance (or anyone else) finds in reviewing the docu-
ments. All problem reports should be submitted to quality assurance for coordination
(to prevent multiple reports from being issued on the same problem) and then issued
formally by the quality assurance group.

Many students find writing difficalt. Therefore, in addition to its responsibility
for document consistency, quality assurance should note awkward phrasing and help
to put the documents into simple language. -

For the most part it is unreasonable to expect quality assurance to produce doc-
umentation or programming standards that go beyond the document outlines in-
cluded in this beok. Students do, however, sometimes enjoy defining document
formatting conventions such as the use of alphabetic and roman numerals for section
numbers, indentation guidelines, and page-heading style guides.

3. Presentation Committee. Each group makes periodic review presentations
of its draft documents to the rest of the class. These presentations should be con-
ducted with relative formality and records should kept of any action items that result
from these reviews. Th¥ presentation committee, which runs the reviews, should

make sure that it stays on the subject and gets bogged down neither in resolving -

problems nor in name calling or other nonproductive activities. It is also responsible
for pointing out the issues raised at the review sessions for recording by the project
historian and must set standards for the presentations, provide a moderator, and in
general encourage the groups to take the matier seriously.

4. Technigal Committee. The technical committee makes recommendations to
the management group about technical topics that are not within the purview of in-
dividual groups. It is responsible for analyzing conflicts that develop between groups
and for providing the objective, technical information on which resolutions may be
based. As an example, it may be that a number of systems could conceivably serve

»

PREFACE xii

as host to a project. After listening to arguments for each of the possible systems this
committee would report to management on the issue. As another example, different
groups may have different ideas about the scope of a project. Although this is pri-
marily a requirements matter, other groups may have good reasons for wanting to
define scope somewhat differently. It may, for example, be possible to include in
the initial version of the system features that the requirements group would otherwise
have left as future enhancements. Again after listening to all sides the technical com-
mittee must produce a report that defines the problem. If it so désires it may also
make recommendations.

These committees should schedule meetings approximately once a week. If there is
no work be be done at a meeting it can be adjourned quickly, but it is important that
meetings be scheduled regularly so that the committees can develop an undeutandmg
of their responsibilities.

THE PLACE OF THIS BOOK IN THE SOFTWARE ENGINEER[NG
LITERATURE

P

Much as been written recently on the subjects covered or fouched ot by this book.
The general field is commonly known as software engineering. Because it involves
the application of technology to the development and maintenance of software, it
naturally divides itself into two subfields: software engineering technology and soft-
ware engineering management. This book is about software engineering technology;
it is not about software engineering managemcnt As such it contrasts with many of
the other books in the field.

In addition to the technology/management dimension, books in this field may be
measured on a formality scale. At the informal end they are primarily anecdotal; at
the other end they are formal and theoretical. This book is in the middle; it presents
material rigorously but does not sacrifice intuitive understanding. It is intended to
be accessible to practitioners in the field and to senior level computer science un-
dergraduate students.

The following annotated bibliography discusses selected works. They were in-
cluded if are widely known or of significant interest. With this contour map of
other publications current books may be located. References in the annotations are
. to other works in this list.

Representative Books

Bersoff, E.H., V.D. Henderson, and S.G. Siegel, Software Configuration Manage-
ment, Prentice-Hall. Englewood Cliffs, New Jersey, 1980. Software product assur-
. ance through configuration management. A thomugh management oriented,
presentation.

Booch, G., Software Engineering with Ada, Betyamm-Cummmgs, Menlo Park,
California, 1983. The *‘object-oriented’” approach to software design based on ideas

xiv PREFACE

in Abbott (1983). Relevant to the design of software architecture and algorithms.
Presented on a level accessible to most programmers.
Brooks, F.P., The Mythical Man Month, Addison-Wesley, Reading, Massachusetts,
1975. Good advice about managing software development.
Jackson, M. Principles of Program Design, Academic, New York, 1975. A semi-
formal approach to program design that maps the syntactic structure of a program’s
input into a structure for an algorithm to process that input. Similar to Warnier
(1974). .
Jensen, R.C. and C. C. Tonies, Eds., Software Engineering, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1979. A relatively informal collection of articles. Pri-
marily management oriented. Topics include management issues, algorithm design
(structured programming), testing, security, and legal aspects.
Jones, C.B., Software Development: A Rigorous Approach, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1980. An attempt to make formal approaches to algorithm
specification and verification accessible to practitioners. Focuses on abstraction and
formal specification and verification. Too difficult for most programmers.
Metzger, P.W., Managing a Programming Project, Prentice-Hall, Englewood
" Cliffs, New Jersey, 2nd ed. 1981. A step-by-step guide through the development
cycle. Greatest emphasis is on managing the programmung and testing activities.
Myers, G., Composite Structured Design, Van Nostrand, New York, 1978. A rel-
atively informal data flow approach to program design. Similar to Yourdon (1979).
Pressman, R.S., Sofiware Engineering, A Practitioner’s Approach, McGraw-Hill,
New York, 1982. A survey that covers most topics in the standard life cycle. Rel-
atively informal. Includes separate chapters on each of the traditional structured de-
sign approaches: stepwise refinement, cohesion versus coupling of subprograms
(called ‘‘modules’’) (Stevens, 1974), and dataflow (bubble charts) (Myers, 1978;
Yourdon and Constantine, 1979). and - data structure (Jackson, 1975; Wamier,
1974).

_ Procedings: Specifications of Rehable Software, IEEE Catalog No T9CH1401-9C,
1979. A comprehensive collection of ongmal and review papers on methods of for-
mal speclﬁcatxm and verification.

Tausworthe, R.C., Standardized Developmerit of Computer Software, Prenuce Hall,
Englewood ngffs,fNew Jersey, 1979, two volumes. Discussions and outlines of
standardized documents developed for NASA at JPL to cover the entire development
cycle. Medium formality. Covers management and techaical aspects A good pre-
sentation of the state of the art in industry in 1979. -

Warnier, J.D., Logical Construction of Programs, Van Nostrand, New York, 1974,
A semiformal approach to-program design that maps the syntactic structure of a pro-
gram’s input into a structure for an algonthm to process that input. Similar to Jackson
(1975).

Yourdon, E."and L. Cmstannne, Structured Design, Prentice- Hall Englewood
Cliffs, New Jersey, 1979. A xelatlvely informal dataflow approach to program de-
sign. Similar to Myers (i979). -

PREFACE v

Zelkowitz, M.V., A.C. Shaw, and J.D. Gannon, Principles of Software Engineering
and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1979. A somewhat dis-.
jointed collection of articles that covers aspects of the development cycle. Focuses
primarily on programming techniques, that is, algorithm implementation.

Representative Papers

‘Abbott, R.J., ‘‘Program Design By Informal English Descriptions,’* Communica-
tion of the ACM, November 1983. An approach to algorithm design based on the
idea of identifying common nouns with abstract data types. Forms the basis of Booch
(1983).

Alford, M.W., ‘*A Requirements Engineering Methodology for Realtime Process-
ing Requirements,’’ IEEE Transactions on Software Engineering, 1(3).:60-69, 1977.
Describes SREM, a tool for high-level system design by functional decomposition.
Intended for requirements analysis. Competes with PSL/PSA.

Blazer, R. and N. Goldman, ‘‘Principles of Good Software Specification and Their
Implications for a Specification Language,”’ Proceedings: Specifications of Reliable
Software, IEEE Catalog No. 79CH1401-9C, 1979. Discussion of requirements for
languages for system specification. See also Goldman (1980).

Goldman, N. and D.S. Wile, A Database Foundation for Process Specification,
USC-ISI Report RR-80-84, 1980. A language for system specification derived from
the requirements in Balzer (1979). A promising approach that uses techniques and
notations from relational databases and formal specification to build a model of the
system specified.

Guttag, J.V., E. Horowitz, and D.R. Musser, ‘‘Abstract Data Types and Software
Validation,”’ Communications of the ACM 21(12):1048-1064, 1978. The formal al-
gebraic approach to abstract data types. Relevant to the design of software archntcc-
ture and algorithms. .

Heninger, K.L., J.W. Kallander, }.E. Shore, and D.L. Pamas, Software Require-
ments for the A-7E Aircraft, NRL Memorandum Report 3876, Naval Research Lab-
oratories, Washington, D.C., 1980. An informal but rigorous specification of an
existing software system. Demonstrates that software can be well documented with-
out excessive formalism.

Luckham, D.C. and W. Polak, ‘‘A Practical Method of Documenting and Verifying
Ada Programs with Packages,”” Proceedings of the ACM-SIGPLAN Symposium on
the Ada Programming Language, 1980, pp. 113-122. An attempt to apply the al-
gebraic method of abstract specification (Guttag, 1978) to Ada packages.

Parnas, D.L., *‘On the Criteria to be Used in Decomposing Systems into Modules, "’
Communications of the ACM, 15(12):1053-1058, 1972. One of the original works
that defined software architecture as something other than algorithm design.

Stzy, J.F., “HIPO and Integrated Program Design,”” IBM Systems Journal,
15(2):143-154, 1976. An early approach to stepwise refinement and dataflow de-
sign. .

xvi PREFACE

Stevens, W., G. Myers, and L. Constantine, ‘‘Structured Design,’’ IBM System
Journal 13(2):1974. A discussion of criteria for decomposing programs into sub-
programs. Introduces the notions of coupling and cohesion.

Teichrow, D. and E. Hershey, ‘‘PSL/PSA: A Computer Aided Technique for Struc-
tured Documentation and Analysis of Information Processing Systems,”’ IEEE '
Transactions of Software Engineering 3(1):41-48, 1977. A tool for high-level sys-
tem dataflow design. Intended for requirements analysis. Competes with SREM.
Lately has evolved into an automated document production system capable of inte-
grating text with automatically generated reports and diagrams.

ACKNOWLEDGMENTS

I should iike to acknowledge the work of all those who preceded me in this field. 1
hope that I have done justice to their conditions. In addition, I should like to'ad-
knowledge Jane Radatz for her enthusiastic support during the early work of writing
this book and for her technical assistance, Ric Cowan for his aid, especially during
the final period, and the Aerospace Corpomt:on and California State University,
Northridge, for their support.

. RuysSSELL J. ABBOTT

Chatsworth, California
August 1985

CONTENTS

1 Introduction

1.1 Software-Directed Systems 1

1.2 Framework for Technical Information 2
1.3 Software Support Environments 4

1.4 Continuing Development 4

Exercises 24

References
PART 1 REQUIREMENTS

2 Requirements Discussion

Exercises 18_
3 Requirements Document Qutline

31 Overview of the Document, Organization, and Conventions 19

3.1.1 Scope of Document 20

xviij

3.2

33

34

3.5

3.6

3.1.2 Organization of Document: Annotated Contents
3.1.3 Conventions Used in Documen: 20

Exercises 21
Systems Overview and Organizational Context 21

3.2.1 System Definition 21

3.2.2 Overview of the User Organization 22
3.2.3 Anticipated Operational Strategy 24
3.2.4 Currently Used Procedures 26

Exercises 26
World Model 28

3.3.1 Entity-Relation Summary 60
3.3.2 Entity Types 60

3.3.3" Individuals 62

3.3.4 Relations 63

Exercises 64
Functional Requirements 65
Exercises 78

Compatibility Requirements 79
3.5.1 HostSystem 79

CONTENTS
20

3.5.2 Other Directly Interfacing Systems or Environments 80

3.5.3 Other Required Compatibilities 80
Exercises 81

Human Factors 82
User Typei 82
1. User Sophistication 83
1.1 Level of Computer Sophistication 83
1.2 Level of Technical Competence 83
2. Physical Needs/Constraints 83
2.1 Special Physical Limitations 83
2.2 Response-Time Requirements 84
On-Line Tutorial Needs 84
On-Line Assistance Needs 84
Robustness Requirements 85
. Failure Message and Diagnostic Requirements 85
. Input Convenience Requirements 85
. Output Convenience Requirements 86

el B = N R

Exercises 87

