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PREFACE

The pattern set nearly 70 years ago by Maxwell’s Treatise on Electric-
ity and Magnetism has had a dominant influence on almost every subse-
quent English and American text, persisting to the present day. The
Treatise was undertaken with the intention of presenting a connected
account of the entire known body of electric and magnetic phenomena
from the single point of view of Faraday. Thus it contained little or
no mention of the hypotheses put forward on the Continent in earlier
years by Riemann, Weber, Kirchhoff, Helmholtz, and others. It is
by no means clear that the complete abandonment of these older theories
was fortunate for the later development of physics. So far as the
purpose of the Treatise was to disseminate the ideas of Faraday, it was
undoubtedly fulfilled ; as an exposition of the authoi’s own contributions,
it proved less successful. By and large, the theories and doctrines
peculiar to Maxwell—the concept of displacement current, the identity
of light and electromagnetic vibrations—appeared there in scarcely
greater completeness and perhaps in a less attractive form than in the
original memoirs. We find that all of the first volume and a large part
of the second deal with the stationary state. In fact only a dozen pages
are devoted to the general equations of the electromagnetic field, 18 to
the propagation of plane waves and the electromagnetic theory of light,
and a score more to magnetooptics, all out of a total of 1,000. The
mathematical completeness of potential theory and the practical utility of
circuit theory have influenced English and American writers in very
nearly the same proportion since that day. Only the original and
solitary genius of Heaviside succeeded in breaking away from this course.

For an exploration of the fundamental content of Maxwell’s equations
one must turn again to the Continent. There the work of Hertz, Poin-
caré, Lorentz, Abraham, and Sommerfeld, together with their associates
and successors, has led to a vastly deeper understanding of physical
phenomena and to industrial developments of tremendous proportions.

The present volume attempts a more adequate treatment of variable
electromagnetic fields and thetfgory Ofegave propagation. Some atten-
tion-is given to the statigfadadis i I the purpose of introducing
fundamental concepts ¥hdE@Rimple colifiifaoRs. and always with a view
to later application iw the—general- TRe reader must possess a
general knowledge of @ecttidiffand magndtisng such as may be acquired

from an elementary ¢ IR R efpefnental la-ws of Coulomb,
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Ampére, and Faraday, followed by an intermediate course dealing with
the more general properties of circuits, with thermionic and electronic
devices, and with the elements of electromagnetic machinery, termi-
nating in a formulation of Maxwell’s equations. This book takes up
at that point. The first chapter contains a general statement of the
equations governing fields and potentials, a review of the theory of units,
reference material on c¢urvilinear coordinate systems and the elements of
tensor analysis, concluding with a formulation of the field equations in
a space-time continuum. The second chapter is also general in char-
acter, and much of it may be omitted on a first reading. Here one will
find a discussion of fundamental field properties that may be deduced
without reference to particular coordinate systems. A dimensional
analysis of Maxwell’s equations leads to basic definitions of the vectors
E and B, and an investigation of the energy relations results in expres-
sions for the mechanical force exerted on elements of charge, current, and
neutral matter. In this way a direct connection is established between
observable forces and the vectors employed to describe the structure of a
field.

In Chaps. IIT and IV stationary fields are treated as particular cases
of the dynamic field equations. The subject of wave propagation is
taken up first in Chap. V, which deals with homogeneous plane waves.
Particular attention is given to the methods of harmonic analysis, and
the problem of dispersion is considered in some detail. Chapters VIand
VII treat the propagation of cylindrical and spherical waves in unbounded
spaces. A necessary amount of auxiliary material on Bessel functions
and spherical harmonics is provided, and consideration is given to vector
solutions of the wave equation. The relation of the field to its source,
the general theory of radiation, and the outlines of the Kirchhoff-Huygens
diffraction theory are discussed in Chap. VIIIL. )

Finally, in Chap. IX, we investigate the effect of plane, cylindrical,
and spherical surfaces on the propagation of electromagnetic ficlds.
This chapter illustrates, in fact, the application of the general theory
established earlier to problems of practical interest. The reader - will
find here the more important laws of physical optics, the basic theory
governing the propagation of waves along cylindrical conductors, a
discussion of cavity oscillations, and an outline of the theory of wave
propagation over the earth’s surface. '

It is regrettable that numegiesl solytiong of special examples could
not be given more frequently’hngl'irr grégtey detail. Unfortunately the
demands on space in a book togering such a'broad field made this imprac-
tical. The primary objective of .the book is a sound exposition of
electromagnetic theory, and examples have been chosen with a view to
illustrating its principles. ©° No pretense is made of an exhaustive treat~
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ment of antenna design, transmission-line characteristics, or similar
topics of engineering importance. It is the author’s hope that the
present volume will provide the fundamental background necessary for
a critical appreciation of original contributions in specisl fields and satisfy
the needs of those who are unwilling to accept engineering formulas
without knowledge of their origin and limitations.

Each chapter, with the exception of the first two, is followed by a
set of problems. There is only one satisfactory way to study a theory,
and that is by application to specific examples. The problems have been
chosen with this in mind, but they cover also many topics which it was
necessary to eliminate from the text. This is particularly true of the
later chapters. Answers or references are provided in most cases.

This book deals solely with large-scale phenomena. It is a sore
temptation to extend the discussion to that fruitful field which Frenkel
terms the ““quasi-microscopic state,”’” and to deal with the many besutiful
results of the classical electron theory of matter. In the light of con-
t,emporé.ry developments, anyone attempting suchra program must soon
be overcome with misgivings. Although many laws of classical electro-
dynamics apply directly to submicroscopic domains, one has no basis
of selection. The author is firmly convinced that the transition must be
made from quantum electrodynamics toward classical theory, rather
than in the reverse direction. Whatever form the equations of quantum
electrodynamics ultimately assume, their statistical average over large
numbers of atoms must lead to Maxwell’s equations.

The m.k.s. system of units has been employed exclusively. There
is still the feeling among many physicists that this system is being forced
upon them by a subversive group of engineers. Perhaps it is, although
it was Maxwell himself who first had the idea. At all events, it is a good
system, easily learned, and one that avoids endless confusion in practical
applications. At the moment there appears to be no doubt of its uni-
versal adoption in the near future. Help for the tories among us who
hold to the Gaussian system is offered on page 241.

In contrast to the stand taken on the m.k.s. system, the author
has no very strong convictions on the matter of rationalized units.
Rationalized units have been employed because Maxwell’s equations are
taken as the starting point rather than Coulomb’s law, and it seems
reasonable to make the point of departure as simple as possible. As a
result of this choice all equations dealing with energy or wave propagation
are free from the factor 4r. Such relations are becoming of far greater
practical importance than those expressing the potentials and field
vectors in terms of their sources.

The use of the time factor e~ instead of e™*t ig another point of
mild cuutroversy. This has been done because the time factor is invar-
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iably discarded, and it is somewhat more convenient to retain the positive
exponent et®R® for a positive traveling wave. To reconcile any formula
with its engineering counterpart, one need only replace —7 by +j.

The author has drawn upon many sources for his material and is
indebted to his colleagues in both the departments of physics and of
clectrical engineering at the Massachusetts Institute of Technology.
Thanks are expressed particularly to Professor M. F. Gardner whose
advice on the practical aspects of Laplace transform theory proved
invaluable, and to Dr. 8. Silver who read with great care a part of the
manuscript. In conclusion the author takes this occasion to express his
sincere gratitude to Catherine N. Stratton for her constant encourage-
ment during the preparation of the ma.nuscnpt and untiring aid in the
revision of proof.

JULIUS ADAMS STRATTON.

© CaMBRIDGE: Mass., |
January, 1041.
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ELECTROMAGNETIC THEORY

CHAPTER I
THE FIELD EQUATIONS

A vast wealth of experimental evidence accumulated over the past
century leads one to believe that large-scale electromagnetic phenomena
are governed by Maxwell’s equations. Coulomb’s determination of the
law of force between charges, the researches of Ampére on the interacticn
of current eleme its, and the observations of Faraday on variable fields
can be woven into a plausible argument to support this view. The
historical approach is recommended to the beginner, for it is the simplest
and will afford him the most immediate satisfaction. In the present
volume, however, we shall suppose the reader to have completed such a
preliminary survey and shall eredit him with a general knowledge of the
experimental facts and their theoretical interpretation. Electromagnetic
theory, according to the standpoint adopted in this book, is the theory of
Maxwell’s equations. Consequently, we shall postulate these equations
at the outset and proceed to deduce the structure and properties of the
field together with its relation to the source. No single experiment
constitutes proof of a theory. The true test of our initial assumptions
will appear in the persistent, uniform correspondence of deduction with
observation.

In this first chapter we shall be occupied with the rather dry business
of formulating equations and preparing the way for our investigation.

MAXWELL'S EQUATIONS

1.1. The Field Vectors.—By an electromagnetic field let us under-
stand the domain of the four vectors E and B, D and H. These vectors
are assumed o be finite throughout the entire field, and at all ordinary
points to be econtinuous functions of position and time, with continuous
derivatives. Discontinuities in the field vectors or their derivatives
may occur, however, on surfaces which mark an abrupt change in the
physical properties of the medium, According to the traditional usage,
E and H are known as the intensities respectively of the electric and
magnetic field, D is called the electric displacement and B, the magnetic
induction. Eventually the field vectors must be defined in terms of the

experiments by which they can be measured. Until these experiments
1



2 THE FIELD EQUATIONS [Crar. I

are formulated, there is no reason to consider one vector more funda-
mental than another, and we shall apply the word intensity to mean
indiscriminately the strength or magnitude of any of the four vectors
at a point in space and time.

The source of an electromagnetic field is a distribution of electric
charge and current. Since we are concerned only with its macroscopic
effects, it may be assumed that this distribution is continuous rather
than discrete, and specified as a function of space and time by the den-
sity of charge p, and by the vector current density J.

We shall now postulate that at every ordinary point in space the field
vectors are subject to the Maxwell equations:

) vxE+-§=0,
aD
@ , vxE-P_j

By an ordinary point we shall mean one in whose neighborhood the
physical properties of the medium are continuous. It has been noted that
the transition of the field vectors and their derivatives across a surface
bounding a material body may be discontinuous; such surfaces must,
therefore, be excluded until the nature of these discontinuities can be
investigated. .

1.2, Charge and Current.—Although the corpuscular nature of elec-
tricity is well established, the size of the elementary quantum of charge
is too minute to be taken into account as a distinct entity in a strictly
macroscopic theory. Obviously the frontier that marks off the domain
of large-scale phenomena from those which are microscopic is an arbi-
trary one. To be sure, a macroscopic element of volume must contain
an enormous number of atoms; but that condition alone is an insufficient
criterion, for many crystals, including the metals, exhibit frequently a
microscopic “grain”’ or “mosaic’’ structure which will be excluded from
our investigation. We are probably well on the safe side in imposing
a limit of one-tenth of a millimeter as the smallest admissible element
of length. There are many experiments, such as the scattering of light
by particles no larger than 10~ mm. in diameter, which indicate that
the macroscopic theory may be pushed well beyond the limit suggested.
Nonetheless, we are encroaching here on the proper domain of quantum
theory, and it is the quantum theory which must eventually determine
the validity of our assumptions in microscopic regions.

Let us suppose that the charge contained within a volume element As
is Aq. The charge density at any point within Av will be defined by the
relation

@) " Ag = pAw,
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Thus by the charge density at a point we mean the average charge per
unit volume in the neighborhood of that point. In a strict semse (3)
daees not define a continuous function of position, for Ay cannot approach
zero without limit. Nonetheless we shall assume that p can be repre-
sented by a function of the coordinates and the time which at ordinary
points is continuous and has continuous derivatives. The value of the
total charge obtained by integrating that function over a large-scale
volume will then differ from the true charge contained therein by a
microscopiec quantity at most.

Any ordered motion of charge constitutes a current. A current dis-
tribution is characterized by a vector field which specifies at each point
not only the intensity of the flow but also its direction. As in the study
of fluid motion, it is convenient to imagine streamlines traced through
the distribution and everywhere tangent to the direction of flow. Con-
sider a surface which is orthogonal to a system of streamlines. The
current density at any point on this surface is then defined as a vector J
directed along the streamline through the point and equal in magnitude
to the charge which in unit time crosses unit area of the surface in the
vicinity of the point. On the other hand the current I across any surface
S is equal to the rate at which charge crosses that surface. If n is the
nngitive unit normal to an element Ae of S, we have

4) Al = J-.n Aa.

Since Aa is a macroscopic element of area, Eq. (4) does not define the
current density with mathematical rigor as a continuous function of
position, but again one may represent the distribution by such a function
without incurring an appreciable error. The total current through S is,
therefore,

(5) I-—-L]'-nda.

Sinee electrical charge may be either positive or negative, a convention
must be adopted as to what constitutes a positive current. If the flow
through an element of area consists of positive charges whose velocity
vectors form an angle of less than 90 deg. with the positive normal n,
the current is said to be positive. If the angle is greater than 90 deg., the
current is negative. Likewise if the angle is less than 90 deg. but the
charges are negative, the current through the element is negative. In
the case of metallic conductors the carriers of electricity are presumably
negative electrons, and the direction of the current density vector is
therefore opposed to the direction of electron motion.

Let us suppose now that the surface S of Eq. (5) is closed. We shall
adhere to the custcmary convention that the posiive normal to a closed



