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PREFACE

This book is a graduate level text which goes beyond and augments
the undergraduate ‘exposure engineering students might have to signal
processing; particularly, communication systems and digital filtering theory.
The material covered in this book is vital for students in the fields of control
" and communications and relevant to students in such diverse areas as sta-
tistics, economics, bioengineering and operations research. The subject matter |
requires the student to work with linear system theory results and elemen-
tary concepts in stochastic processes which are generally assumed at graduate
level. However, this book is appropriate at the senior year undergraduate
level for students with background in these areas.

Certamly the book contains more material than is usually taught in one
semester, so that for a one semester or quarter length course, the first three
chapters (dealing with the rudiments of Kalman filtering) can be covered
first, followed by a selection from later chapters. The chapters following -
Chapter 3 build in the main on the ideas in Chapters 1, 2 and 3, rather than
on all preceding chapters. They cover a miscellany of topics; for example,
time-invariant filters, smoothing, and nonlinear filters. Although there is a
significant benefit in proceeding through the chapters in sequence, this is not
-essential, as has been shown by the authors’ experience in teaching this course,

The pedagogical feature of the book most likely to startle the reader

ix:




x PREFACE

is the concentration on discrete-time filtering. Recent technological develop-
ments as well as the easier path offered students and instructors are the two
reasons for this course of action. Much of the material of the book has been
with us in one form or another for ten to fifteen years, although again, much
is relatively recent. This recent work has given new perspectives on the earlier
material; for example, the notion of the innovations process provides helpful
insights in deriving the Kalman filter. '

We acknowledge the research support funding of the Australian Research
Grants Committee and the Australian Radio Research Board. We are
indebted also for specific suggestions from colleagues, Dr. G. Goodwin and
Dr. A. Cantoni; joint research activities with former Ph.D. students Peter
Tam and Surapong Chirarattananon; and to the typing expertise of Dianne
Piefke. We have appreciated discussions in the area of optimal filtering with
many scholars including Professors K. Astrom, T. Kailath, D. Mayne, J.
Meditch and J. Melsa. '

B. D. O. ANDERSON
New South Wales, Australia _ J. B. MOORE
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CHAPTER 1

INTRODUCTION

14 FILTERING

. F;ltermg in one form or another has been with us for a very long time.
For many centuries, man has attempted to remove the more visible of the
impurities in his water by filtering, and one dictionary gives a first meaning

for the noun filter as “a contrivance for freeing liquids from suspended

impurities, especially by passing them through strata of sand, charcoal,
etc.”

Modern usage of the word filter often involves more abstract entities than
fluids with suspended impurities. There is usually however the notion of
something passing a barrier: one speaks of news filtering out of the war zone,
or sunlight filtering through the trees. Sometimes the barrier is interposed by
man for the purpose of sorting out something that is desired from something
else with which it is contaminated. One example is of course provided by water
purification; the use of an ultraviolet filter on a camera provides another
example. When the entities involyed are signals, such as electrical voltages,
the barrier—in the form perhaps of an electric network—becomes a filter in
the sense of signal processing. ’

It is easy to think of engineering situations in which filtering of signals
might be desired. Communication systems always have unwanted signals, or

5505729 | K



‘2 INTRODUCTION Ch. 1

noise, entering into them. This is a fundamental fact of thermodynamics. The
user of the system naturally tries to minimize the inaccuracies caused by the
presence of this noise—by filtering. Again, in many control systems the con-
trol is derived by feedback, which involves processing measurements derived
from the system. Frequently, these measurements will contain random inac-
curacies or be contaminated by unwanted signals, and filtering is necessary in
order to make the control close to that desired.

1.2 HISTORY OF SIGNAL FILTERING

Filters were ongmally seen as circuits or systems with frequency selec-
tive behaviour. The series or parallel tuned circuit is one of the most funda-
mental such circuits in electrical engineering, and as a “wave trap” was a
crucial ingredient in early crystal sets. More sophisticated versions of this
same idea are seen in the IF strip of most radio receivers; here, tuned circuits,
coupled by transformers and amplifiers, are used to shape a passband of
frequencies which are gmplified, and a stopband where attenuation occurs.

Something more sophisticated than collections of tuned circuits is nec-
essary for many applications, and as a result, there has grown up an extensive
body of filter design theory. Some of the landmarks are constant k¥ and
m-derived filters [1], and, later, Butterworth filters, Chebyshev filters, and
elliptical filters [2]. In more recent years, there has been extensive development
of numerical algorithms for filter design. Specifications on amplitude and
phase response characteristics are given, and, often with the aid of sophisti-
cated computer-alded des1gn packages which allow interactive operation, a
ﬁlter is designed to meet these.specifications. Normally, there’ are also
constraints imposed on the filter structure which have to be met; these con-
straints may involve impedance levels, types of components, number of com-
ponents, etc.

Nonlinear filters have also been used for many years., The simplest is the
AM envelope detector [3], which is a combination'of a diode and a low-pass
filter. In a similar vein, an automatic gain control (AGC) circuit uses a low-
pass ﬁlter and a nonlinear element [3). The phase-locked-loop used for FM
reception is another example of a nonlinear filter [4), and recently the use of
Dolby® systems in tape recorders for signal-to-noise ratio enhancement has
provided another living-room application of nonlinear filtering ideas.

The notion of a filter as a device processing continuous-time signals and
possessing frequency selective behaviour has béen stretched by two major
developments. . .

The first such development is digital filtering [5—7], made possible by
recent innovations in integrated circuit technology. Totally different circuit
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modules from those used in classical filters appear in digital filters, e.g.,
analog-to-digital and digital-to-analog converters, shift registers, read-only
memories, even microprocessors. Therefore, though the ultimate goals of
digital and classical filtering are the same, the practical aspects of digital
filter construction bear little or no resemblance to the practical aspects of,
say, m-derived filter construction. In digital filtering one no longer seeks to
minimize the active element count, the size of inductors, the dissipation of
the reactive elements, or the termination impedance mismatch. Instead, one
may seek to minimize the word length, the round-off error, the number of
wiring operations in construction, and the processing delay.

Aside from the possible cost benefits, there are other advantages of this
new approach to filtering. Perhaps the most important is that the filter param-
eters can be set and maintained to a high order of precision, thereby achiev-
ing filter characteristics that could not normally be obtained reliably with
classical filtering. Another advantage is that parameters can be easily reset or
made adaptive with little extra cost. Again, some digital filters incorporating
microprocessors can be tlme-shared to perform many simultaneous tasks
effectively.

The second major development came with the apphcatxon of statistical
ideas to filtering problems [8-14] and was largely spurred by developments
in theory. The classical approaches to filtering postulate, at least implicitly,
that the useful signals lie in. one frequency band and unwanted signals, nor-
mally termed noise, lie in another, though on occasions there can be overlap.
The statistical approaches to filtering, .on the other hand, postulate that
certain statistical properties are possessed by the useful signal and unwanted
noise. Measurements are available of the sum of the signal and noise, and the
task is still to eliminate by some means as much of the noise as possible
through processing of the measurements by a filter. The earliest statistical
ideas of Wiener and Kolmogorov [8, 9] relate to processes with statistical
properties which do not change with time, i.e., to stationary processes. For
these processes it proved possible to relate the statistical properties of the '
useful signal and unwanted noise with their frequency domain properiies.
There is, thus, a conceptual link with classical filtering.

A significant aspect of the statistical approach is the definition of a
measure of suitability or performance of a filter. Roughly the best filter is
that which, on the average, has its output closest to the correct or useful
signal. By constraining the filter to be linear and formulating the performance
measure in terms of the filter impulse response and the given statistical prop-
erties of the signal and noise, it generally transpires that a unique impulse
response corresponds to the best value of the measure of performance or
suitability..

As noted above, the assumption that the underlying signal and noise
processes are stationary is crucial to the Wiener and Kolmogorov theory. It
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was not until the late 1950s and early 1960s that a theory was developed
that did not require this stationarity assumption [11-14]. The theory arose
because of the inadequacy of the Wiener-Kolmogorov theory for coping with
certain applications in which nonstationarity of the signal and/or noise was
intrinsic to the problem. The new theory soon acquired the name Kalman
filter theory.

Because the stationary theory was normally developed and thought of in
frequency domain terms, while the nonstationary theory was naturally
developed and thought of in time domain terms, the contact between the two
theories initially seemed slight. Nevertheless, there is substantial contact, if
for no other reason than that a stationary process is a particular type of non-
stationary process; rapprochement of Wiener and Kalman filtering theory is
now easily achieved.

As noted above, Kalman filtering theory was developed at a time when
applications called for it, and the same comment is really true of the Wiener
filtering theory. It is also pertinent to note that the problems of implementing
Kalman filters and the problems of implementing Wiener filters were both
~ consistent with the technology of their time. Wiener filters were implementable
with amplifiers and time-invariant network elements such as resistors and
capacitors, while Kalman filters could be implemented with digital integrated
circuit modules.

The point of contact between the two recent streams of development,
digital filtering and statistical filtering, comes when one is faced with the
problem of 1mplement1ng a discrete-time Kalman filter using digital hard-
ware. Looking to the future, it would be clearly desirable to incorporate the
practical constraints associated with digital filter realization into the mathe-
matical statement of the statistical filteting problem. At the present time,
however, this has not been done, and as a consequence, there is little contact
between the two streams.

1.3 SUBJECT MATTER OF THIS BOOK

This book seeks to make a contribution to the evolutionary trend in
statistical filtering described above, by presenting a hindsight view of the
trend, and focusing on recent results which show promise for the future. The
basic subject of the book is the Kalman filter. More specifically, the book
starts with a presentation of discrete-time Kalman filtering theory and then
explores a number of extensions of the basic ideas.

There are four important characteristics of the basic filter:

1. Operation in discrete time
2. Optimality
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3. Linearity
4. Finite dimensionality

Let us discuss each of these characteristics in turn, keeping in mind that
derivatives of the Kalman filter inherit most but not all of these character-
istics.

Discrete-time operation. More and more signal processing is becoming
digital. For tuis reason, it is just as important, if not more so, to understand
discrete-time signal processing as it is to understand continuous-time signal
processing. Another practical reason for preferring to concentrate on discrete-
time processing is that discrete-time statistical filtering theory is much easier
to learn first than continuous-time statistical filtering theory; this is because
the theory of random sequences is much simpler than the theory of con-
tinuous-time random processes.. :

Optimality. An optimal filter is one that is best in a certain sense, and
one would be a fool to take second best if the best is available. Therefore,
provided one is happy with the criterion defining what is best, the argument
for optimality is almost self-evident. There are, however, many secondary
aspects to optimality, some. of which we now list. Certain classes of optimal
filters tend to be robust in their maintenance of performance standards when
the quantmes assumed for design purposes are not the same as the qhantltles

_encountered in operation. Optimal filters normally are free from stability
problems. There are simple operational checks on an optimal filter when it is
being used that indicate whether it is operating correctly. Optimal filters are
probably easier to make adaptive to parameter changes than suboptlmal
filters.

There is, however, at least one potential disadvantage of an optimal
filter, and that is complexity; frequently, it is possible to use a much less -
complex filter with but little sacrifice of performance. The question arises as
to how such a filter might be found. One approach, which has proved itself
in many situations,involves approximating the signal model by one that is
simpler or less complex, obtaining the optimal filter for this less complex
model, and using it for the original signal model, for which of course it is
suboptimal. This approach may fail on several grounds: the resulting filter
may still be too complex, or the amount of suboptlmahty may be unacceptably
great. In this case, it can be very difficult to obtain a satisfactory filter of
much less complexity than the optimal filter, even if one is known to exist,
because theories for suboptimal design are in some ways much less developed
than theories for optimal design.

- Linearity. The arguments for concentrating on linear filtering are those
of applicability and sound pedagogy. A great many applications involve
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linear systems with associated gaussian random processes; it transpires that
the optimal filter in 2 minimum mean-square-error sense is then linear. Of
course, many applications involve nonlinear systems and/or nongaussian
random processes, and for these situations, the optimal filter is nonlinear.
However, the plain fact of the matter is that optimal nonlinear filter design
and implementation are very hard, if not impossible, in many instances. For
this reason, a suboptimal linear filter may often be used as a substitute for an
optimal nonlinear filter, or some form of nonlinear filter may be derived which
is in some way a modification of a linear filter or, sometimes, a collection of
linear filters. These approaches are developed in this book and follow our
discussion of linear filtering, since one can hardly begin to study nonlinear
filtering with any effectiveness without a knowledge of linear filtering.

Finite dimensionality. 1t turns out that finite-dimensional filters should
be used when the processes being filtered are associated with finite-dimen-
sional systems. Now most physical systems are not finite dimensional;
however, almost all infinite-dimensional systems can be approximated by
finite-dimensional systems, and this is generally what happens in the modeling
process. The finite-dimensional modeling of the physical system then leads to

an associated finite-dimensional filter. This filter will be suboptimal to the

extent that the model of the physical system is in some measure an inaccurate
reflection of physical reality. Why should one use a suboptimal filter?
Though one can without too much difficulty discuss infinite-dimensional
filtering problems in discrete time, and this we do in places in this book,

finite-dimensional filters are very much to be preferred on two grounds: they -

are easier to design, and far easier to implement, than infinite-dimensional
filters. : ' o

1.4 OUTLINE OF THE BOOK

The book falls naturally into three parts.
The first part of the book is devoted to the formulation and solution of
the basic Kalman filtering problem. By the end of the first section of Chapter
3, the reader should know the fundamental Kalman filtering result, and by

the end of Chapter 3, have seen it in use. A , ‘
The second part of the book is concerned with a deeper examination of
the operational and computational properties of the filter. For example, there
is discussion of time-invariant filters, including special techniques for com-
puting these filters, and filter stability; the Kalman filter is shown to have a
signal-to-noise ratio enhancement property.
In the third part of the book, there are a number of developments taking
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off from the basic theory. For example, the topics of smoothers, nonlinear
and adaptive filters, and spectral factorization are all covered.

There is also a collection of appendwes to which the reader will probably
refer on a number of occasions. These deal with probability theory and
random processes, matrix theory, linear systems, and Lyapunov stability
theory. By and large, we expect a reader to know some, but not all, of the
material in these appendices. They are too concentrated in presentation to
allow learning of the ideas from scratch. However, if they are consulted when
a new idea is encountered, they will permit the reader to learn much, simply
by using the ideas.

Last, we make the pomt that there are many ideas developed in the
problems. Many are not routine.
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